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1 Introduction
We study the influence of the neutrino quantum decoherence (see
[1–4] and references therein) on collective neutrino oscillations.
Collective neutrino oscillations is a phenomenon engendered by
neutrino-neutrino interaction. It is significant in different astro-
physical environments where the neutrino density is extremely
high. Examples of such environments are the early universe, su-
pernovae explosions, binary neutron stars, accretion discs of black
holes. The effect of collective neutrino oscillations attracts the
growing interest in sight of appearance of multi-messenger astron-
omy and constructing of new large-volume neutrino detectors that
will be highly efficient for observing neutrino fluxes from super-
novae explosions.
Previously, it was shown that neutrino quantum decoherence can
significantly modify the neutrino fluxes from reactors and the sun.
Here below we study the influence of the neutrino quantum de-
coherence on supernovae neutrino fluxes. The peculiarity of the
supernovae fluxes is that one of the main modes of neutrino oscil-
lations in supernovae is engendered by the collective effects. We
note, that previous works dedicated to collective neutrino oscilla-
tions (see [5] and references therein) accounted only for the kine-
matical decoherence.

2 Equations of motion
Consider the two-flavor neutrino mixing scenarios, i.e. the mixing
between νe and νx states where νx stands for νµ or ντ . Here below
we focus on the derivation of the neutrino oscillation probability
and highlight the interplay between collective neutrino oscillations
and neutrino quantum decoherence. We use the simplified model
of supernova neutrinos that was considered in [6, 7]. In such a
model neutrinos are produced and emitted with a single energy
and a single emission angle.
The neutrino evolution in supernovae environment that accounts
for neutrino quantum decoherence is determined by the following
equation

i
dρf
dt

= [H, ρf ] + D[ρf ] , i
dρ̄f
dt

= [H̄, ρ̄f ] + D[ρ̄f ], (1)

where ρf (ρ̄f ) is the density matrix for neutrino (antineutrino)
in the flavour basis and H (H̄) are total neutrino (antineutrino)
Hamiltonian. Neutrino quantum decoherence is described by the
dissipation term D[ρ] that we define in the next section.
Hamiltonian H contains the three terms

H = Hvac + HM + Hνν, (2)

where Hvac is the vacuum Hamiltonian, HM and Hνν are Hamil-
tonians that describe matter potential and neutrino-neutrino inter-
action correspondingly. In the flavour basis they are given by

Hvac =
δm2

4E

(
− cos(2θ) sin(2θ)

sin(2θ) cos(2θ)

)
, (3)

HM =

√
2

2
GFne

(
1 0
0 −1

)
, (4)

Hνν =
√

2GFnν
(
(1 + β)ρf − α(1 + β̄)ρ̄f

)
, (5)

where β represents the initial asymmetry between the electron and
x-type neutrinos, and β̄ the asymmetry between electron and x-
type antineutrinos, α is the ratio of electron antineutrinos relative
to electron neutrinos, ne and nν describe the electron and neutrino
density profiles.

3 Neutrino quantum decoherence
In our previous studies [1–4] we developed a new theoretical
framework that enabled one to consider a concrete process of parti-
cles interactions as a source of the decoherence. In particular, in [1]
a new mechanism of neutrino quantum decoherence engendered
by the neutrino radiative decay. In parallel, another framework
was developed [8, 9] for the description of the neutrino quantum
decoherence due to the non-forward neutrino scattering processes.
Both mechanisms are described by the Lindblad master equation
in form [10, 11].
In this paper we are are not interested in a specific mechanism of
neutrino quantum decoherence. Therefore, we use the Lindblad
master equation for the description of the neutrino quantum deco-
herence and do not fix an analytical expression for the decoherence
and relaxation parameters. The dissipation term D[ρ] is expressed
within neutrino effective mass basis

D [ρm̃(t)] =
1

2

3∑
k=1

[
Vk, ρm̃V

†
k

]
+
[
Vkρm̃, V

†
k

]
, (6)

where Vk are the dissipative operators that arise from interaction
between the neutrino system and the external environment, ρm̃ is
the neutrino density matrix in the effective mass basis. Here below,
we omit index “m̃” in order not overload formulas.
The operators Vk, ρf and H can be expanded over the Pauli matri-
ces O = aµσµ, where σµ are composed by an identity matrix and
the Pauli matrices. In this case eq. (1) can be written in the follow-
ing form

∂Pk(t)

∂t
σk = 2εijkHiPj(t)σk + DklPl(t)σk, (7)

where the matrix Dll = −diag{Γ1,Γ1,Γ2} and Γ1, Γ2 are the param-
eters that describe two dissipative effects: 1) the decoherence ef-
fect and 2) the relaxation effect, correspondingly. In the case of the
energy conservation in the neutrino system there is an additional
requirement on a dissipative operators [12]

[HS, Vk] = 0. (8)

In this case the relaxation parameter is equal to zero Γ2 = 0. Here
below, we consider only the case of the energy conservation, i.e.
Γ2 = 0. For further consideration we use the flavour basis. It can
be shown that the dissipation matrix Dij in the flavour basis is ex-
pressed as

D̃lk = −Γ1

2

1 + cos 4θ̃ 0 sin 4θ̃
0 2 0

sin 4θ̃ 0 1− cos 4θ̃

 , (9)

where θ̃ is the in-medium (effective) mixing angle that is given by

sin2 2θ̃ij =
∆m2

ij sin2 2θij

(∆mij cos 2θij − 2
√

2GFneE)2 + ∆m2
ij sin2 2θij

. (10)

In a particular environments of a supernova where the collective
oscillations occur the electron density is extremely high and the ef-
fective mixing angle θ ≈ 0 and D̃kl ≈ Dkl. We consider only the
case of high electron density, thus we use the latter equality and
substitute wD̃kl by Dkl.

4 Linearized (in)stability analysis
In this section we consider analytical conditions for the occurrence
of the neutrino collective effects. The onset of these collective ef-
fects has been related to the presence of an instability (see [6] and

references therein). In order to study this instabilities we will ap-
ply to eq. (1) the linearization procedure described in [6, 13].
Consider a time dependent small amplitude variation δPk around
the initial configuration P 0

k and a corresponding variation of the
density dependent Hamiltonian δHk around the initial Hamilto-
nian H0

k

Pk = P 0
k + δPk, where δPk = P ′ke

−iωt + H.c., (11)

Hk = H0
k + δHk, where δHk = H ′ke

−iωt + H.c., (12)

H ′k =
∂Hk
∂Pk

P ′k +
∂Hk
∂P̄k

P̄ ′k. (13)

In the case of high electron density the in-medium eigenstates ini-
tially coincide with the flavor states. Therefore, the initial condi-
tions are given by

H0
k =

 0
0

H0

 , P 0
k =

 0
0

P 0

 . (14)

Putting (11)-(14) into (1) and considering only the non-diagonal
elements (ρ12 = Px + iPy) one obtains the following equation for
eigenvalues (we neglect the higher-order corrections)

(ω − iΓ1)

(
ρ′12
ρ̄′21

)
=

(
A12 B12
Ā21 B̄21

)(
ρ′12
ρ̄′21

)
, (15)

where on the right-hand side of equation is the stability matrix that
coincides with one from [6,13]. In case of a single energy and single
emission angle it is expressed as

A12 = (H0
11 −H

0
22)− ∂H12

∂ρ12
(ρ0

11 − ρ
0
22),

B12 =
∂H12

∂ρ̄0
21

(ρ0
22 − ρ

0
11),

Ā21 = (H̄0
22 − H̄

0
11)− ∂H̄21

∂ρ̄21
(ρ̄0

22 − ρ̄
0
11),

B̄21 =
∂H̄21

∂ρ0
12

(ρ̄0
11 − ρ̄

0
22).

(16)

The eigenvalues are given by

ω = iΓ1 +
1

2

(
A12 + Ā21 ±

√
(A12 − Ā21)2 + 4B12B̄21

)
. (17)

From eq. (11) it follows that if the eigenvalues have an imaginary
part, the non-diagonal elements of the neutrino density matrix can
grow exponentially and thus the system become unstable, that is,
if {

(A12 − Ā21)2 + 4B12B̄21 < 0,

Im
(
(A12 − Ā21)2 + 4B12B̄21

)
> Γ1.

(18)

The first condition is the same as was derived in [6, 13]. The sec-
ond term is a new one that was not considered before. From eq.
(18) one can see, that neutrino quantum decoherence prevents a
system from an exponential growth of non-diagonal elements, i.e.
neutrino quantum decoherence leads to the damping of the neu-
trino collective oscillations.

5 Numerical calculations
For numerical calculations we use the supernovae model that was
considered in [7]. The initial neutrino flux is characterized by
α = 0.8, β = 0.48 and β̄ = 0.6 and neutrino energy E = 20 MeV. The
electron density profile is given by

ne(r) = n0

(
Rν
r

)3 [
a + b tan−1

(
r −Rν
Rs

)]
, (19)

where Rν = 10 km is the radius of the neutrinosphere, n0 = 10−4

eV is the electron density at the neutrinosphere, a = 0.308, b = 0.121
and Rs = 42 km are the parameters that characterise the electron
fraction in the supernovae. The neutrino density profile is given
by

nν(r) = n0
ν

(
Rν
r

)4

, (20)

where n0
ν = 10−4 eV is the neutrino density at the neutrinosphere.

With the use of numerical calculations we plot the survival proba-
bility Pνeνe of the electron neutrino depending on the distance for
two particular cases: (i) the survival probability for the case when
the neutrino decoherence effect is not accounted for is shown in
Fig. (1a), and (ii) the survival probability for the case when the
neutrino decoherence effect is accounted for is shown in Fig. (1b)
as a function of the neutrino quantum decoherence (decoherence
parameter is set to be Γ1 = 10−21 GeV). We assumed that the deco-
herence parameters does not depend on neutrino energy.

6 Conclusion
In this paper we considered for the first time the effect of the neu-
trino quantum decoherence in supernovae fluxes. We derive new
conditions of the collective neutrino oscillations accounting for
neutrino quantum decoherence which can appear as a result of the
physics beyond the standard model. Therefore, the importance of
the neutrino quantum decoherence studies are highlighted by the
new opportunity for searching of new physics.
This work was supported by the Russian Foundation for Basic Re-
search under Grant No. 20-52-53022-GFEN-a.
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Figure 1: The survival probability of the electron neutrino in the absence of
quantum decoherence (a) and for the case when the neutrino decoherence pa-
rameter is Γ1 = 10−21 GeV (b).
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