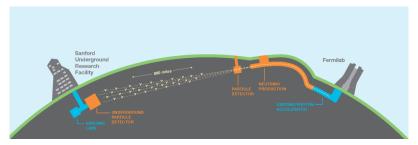


DUNE experiment physics

Seb Jones for the DUNE collaboration

Department of Physics & Astronomy University College London

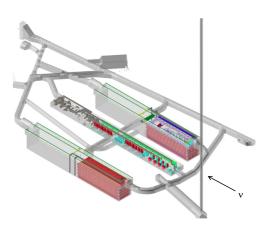
July 30, 2020



DUNE overview

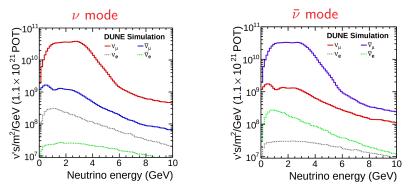
Deep Underground Neutrino Experiment

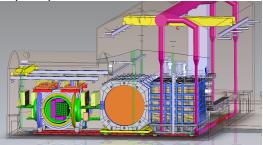
- Broad-band neutrino beam sent from Fermilab to Sanford Underground Research Facility (baseline of ~ 1300 km)
- Multi-component near detector (including a liquid argon component)
- Liquid argon far detector with eventual 68 kt mass (4 \times 17 kt modules)



ICHEP 2020

Far detector (FD)


- Far detector is located 1500 m underground at SURF
- Consists of 4 modules, each with a total (fiducial) mass of 17 kt (10 kt)
- The first of these modules will use single-phase technology
- The collaboration is developing single-phase and dual-phase options for the other modules


$\nu/\bar{ u}$ beam

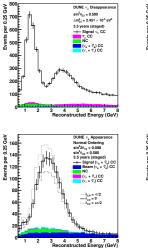
- Beam of mainly ν_{μ} (when running in neutrino enhanced mode) or mainly $\bar{\nu}_{\mu}$ (when running in antineutrino enhanced mode)
- Measured in multi-component near detector

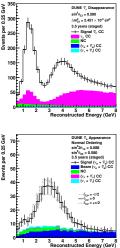
Near detector (ND)

- Neutrino beam measured in multi-component near detector 574 m from target
 - Consists of both a liquid and gaseous argon component and a beam monitor
- Allows characterisation of beam as well as constraining cross-section uncertainties
- See P. Dunne's talk "Status of the DUNE near detector" for further details

DUNE physics program

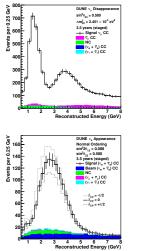
Long baseline $\nu/\bar{\nu}$ oscillation physics

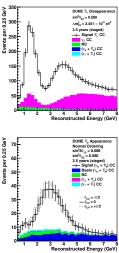

- \blacksquare Measurement of $\delta_{C\!P}$ and potential CP violation by neutrinos
- Neutrino mass hierarchy determination, Δm^2
- Measurements of θ_{23} and θ_{13}


Supernova neutrino bursts

- C. Cuesta's talk: "Core-Collapse Supernova Burst Neutrinos in DUNE"
- A. J. Roeth's talk: "Supernova Neutrino Pointing with DUNE"
- BSM processes (see D. Kim's talk: "BSM Physics Prospects at DUNE")
 - Nucleon decay (see C. Alt's talk: "Nucleon decay search at DUNE")
 - $n \bar{n}$ oscillation (see Y.-J. Jwa's talk: "Neutron-antineutron oscillation search with DUNE")
 - Non-standard interactions
 - Sterile neutrino searches

$\begin{array}{c} \text{Long baseline sensitivites} \\ \nu \text{ mode} & \overline{\nu} \text{ mode} \end{array}$

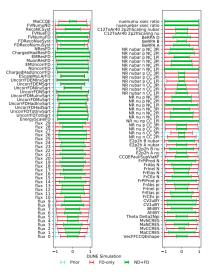

ICHEP 2020

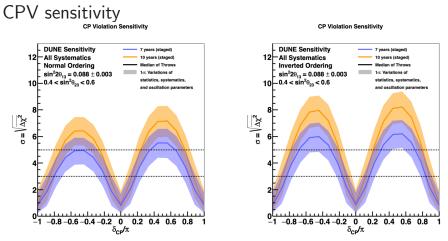

 Far detector samples use full simulation and reconstruction including Convolutional Neural Network for identifying neutrino flavour

See "Neutrino interaction classification with a convolutional neural network in the DUNE far detector" – arXiv:2006.15052

Long baseline sensitivites $\nu \mod \bar{\nu} \mod \bar{\nu}$

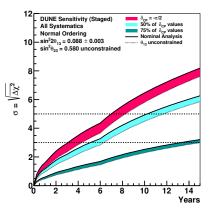
- Sensitivities determined using 4-component fit of FD data along with a constraint from the ND
- Full suite of systematics used
- Full results available in "Long-baseline neutrino oscillation physics potential of the DUNE experiment" – arXiv:2006.16043
- For Asimovs, NuFit 4.0 best fit points used


ICHEP 2020


Treatment of systematics

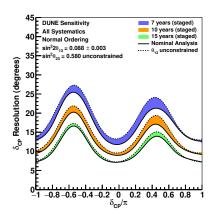
- Flux: Vary hadron production models and design parameters of the beamline
- Neutrino interaction: Used both reweighting parameters built into neutrino interaction generator (GENIE) as well as custom weightings developed for this analysis
- Detector: Uncertainties on detector response for various particle types
- Right: constraint on systematics with and without ND constraint

ICHEP 2020



• After 10 years (staged), there is significant CP violation $(\delta_{CP} \neq 0, \pi)$ discovery potential across true values of δ_{CP} and for both hierarchies

CPV sensitivity over time


CP Violation Sensitivity

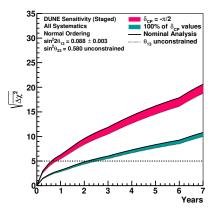
- After 10 years (staged) of running, discovery potential reached for 50% of true δ_{CP}
- After 15 years (staged), evidence of CPV for 75% of δ_{CP} values



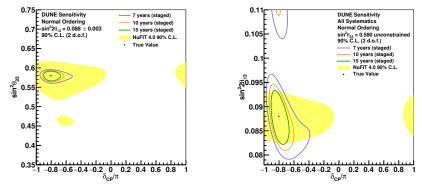
δ_{CP} resolution

- After 10 years (staged) running, δ_{CP} resolution is 10° - 20°
- Moving to longer exposures, resolution drops to even lower levels

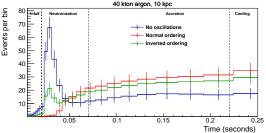
Mass ordering sensitivity



 Obtain a definitive answer for the mass hierarchy within 7 years (staged), regardless of the values of the other oscillation parameters


Mass ordering sensitivity over time

Mass Ordering Sensitivity

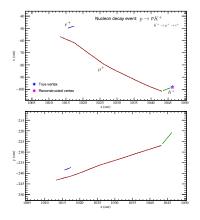

• After 2 years, for all values of δ_{CP} the mass ordering is measured to 5σ

Precision measurements of θ_{23} and θ_{13}

- DUNE will allow a precision measurement of the value of θ₂₃ which will exceed the current limits
- After 15 years (staged) of running, DUNE's θ_{13} measurement will be comparable with reactor experiments

Supernova neutrino bursts

- DUNE will also be sensitive to neutrinos emitted by a galactic core-collapse supernova
 - Primarily through channel: $u_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}^*$
 - Not only will this provide information about the physics of supernova core-collapse but it could also give some hints about the oscillation physics
 - Upcoming paper: "Supernova Neutrino Burst Detection with the Deep Underground Neutrino Experiment"


Beyond the standard model physics

Nucleon decay

- Large far detector mass allows searches for proton decay
- DUNE will be especially sensitive to the decay channel $p \to K^+ \bar{\nu}$

Non-standard interactions

- Non-standard matter effects may be visible in the DUNE far detector due to the long baseline
- Many other prospects detailed in upcoming paper: "Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment"

Summary

- DUNE will enable an exciting physics program
 - Measurement of possible CPV in lepton sector
 - Measurement of neutrino mass hierarchy
 - Precision measurements of other oscillation parameters
 - Supernova neutrino burst physics
 - Many BSM searches
- DUNE FD Technical Design Report Volume II (arXiv:2002.03005) contains more details on physics possibilities
- Series of publications either available or planned which are made up of parts of this volume of the TDR
- 22 other DUNE talks at ICHEP this year

Backup

Assumed staging plan

- Start of beam run: two FD module volumes for total fiducial mass of 20 kt, 1.2 MW beam
- After 1 year: add one FD module volume for total fiducial mass of 30 kt
- After 3 years: add one FD module volume for total fiducial mass of 40 kt
- After 6 years: upgrade to 2.4 MW beam
- 50%/50% ratio of neutrino to antineutrino data assumed

NuFit 4.0 Parameters

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 4.7)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
atmospheric data	$\sin^2 heta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$
	$\theta_{12}/^{\circ}$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$	$33.82\substack{+0.78\\-0.76}$	$31.61 \rightarrow 36.27$
	$\sin^2 heta_{23}$	$0.580^{+0.017}_{-0.021}$	$0.418 \rightarrow 0.627$	$0.584\substack{+0.016\\-0.020}$	$0.423 \rightarrow 0.629$
	$\theta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$
\mathbf{SK}	$\sin^2 \theta_{13}$	$0.02241\substack{+0.00065\\-0.00065}$	$0.02045 \to 0.02439$	$0.02264\substack{+0.00066\\-0.00066}$	$0.02068 \to 0.02463$
without	$\theta_{13}/^{\circ}$	$8.61\substack{+0.13 \\ -0.13}$	$8.22 \rightarrow 8.99$	$8.65_{-0.13}^{+0.13}$	8.27 ightarrow 9.03
	$\delta_{ m CP}/^{\circ}$	215^{+40}_{-29}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$

NuFIT 4.0 (2018), www.nu-fit.org, JHEP 01 (2019) 106 – arXiv:1811.05487