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The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

2-3 galactic supernovae/century
1 SN/s in the observable Universe
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o Aggregate properties of core-collapse supernovae
@ All flavors of neutrinos, redshifted

@ Elusive low energy signal
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Super-Kamiokande: A cheat sheet

Mountain
2700 m.w.e.

Kamioka Mine, Japan

50 kton Water Cherenkov detector

Water constantly recirculated and purified

11129 Inner Detector PMTs
50 cm, 3 ns resolution

Energy coverage
4 MeV to ~TeV

Currently in phase VI, doping with
Gadolinium just started!

Current study: phase IV
longest data-taking period (2008-2017)
2790.1 live days
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The DSNB in Super-Kamiokande

Detecting antineutrinos via Inverse Beta Decay (IBD)

\ Most modern
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[Beacom and Vagins, Phys. Rev. Lett., 93:171101, 2004]
@ 5-20 events/year — Energy range 12-80 MeV
@ Need to characterize spallation and atmospheric backgrounds and identify

the neutrons
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The three pillars of the DSNB analysis

After basic noise reduction cuts:
| - Spallation cuts

@ Remove radioactive isotopes produced by cosmic muons
Il - Atmospheric background reduction/characterization

@ Remove atmospheric signals with pions/muons/gammas

o Estimate spectral shapes of low energy atmospheric neutrinos
Il - Neutron tagging

@ Possible only since SK-IV

@ ldentify neutron capture signal in water
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Spallation backgrounds

Radioactivity induced by cosmic muon spallation in water
See talk by L. Bernard, 29/07

© @ About one muon every two minutes causes

Cosmic spallation in SK
Needs to be reduced by O(10%)

Main signatures
>99% f decays: A — et 4 v
<1% IBD-like (°Li): A — e* +n

Isotopes’ half-lives up to 13 s

Fa
neutron captures N
isotopes

= correlations over large time scales!
@ No existing simulation in WC detectors

Reduction strategy:
o ldentify isotope clusters and neutrons from muon showers

@ Investigate correlations between muons and candidate events
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Spallation: hunting for correlations

Pair each candidate event with muons up to 30 s before
Investigate correlations using a likelihood analysis
Observables Extracting distributions
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muons muons
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to minimum ionization

Final performance: > 90% background rejection (> 99% on “Li)

40-90% signal efficiency (depending on reconstructed energy) s



Evaluating and reducing atmospheric neutrinos

Interaction types Atmospheric backgrounds after cuts
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o Categories: NC and p/7 (reducible), v, CC and decay electrons (irreducible).
@ For NC and u/m: high efficiency cuts on the Cherenkov light pattern.
Estimating normalization and spectral shapes:

@ O(100%) uncertainties on rates and spectral shapes below 100 MeV except
for decay electrons (measured Michel spectrum from stopping muons).

@ Strategies: Use T2K to estimate cross-sections and efficiencies (NC

backgrounds), or use sidebands in energy and Cherenkov angle.
[Y. Ashida, Ph D. thesis (2019)] 8/15



Selecting neutrons: a needle in a haystack

Neutron capture occurs near the positron vertex
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@ New in SK-IV: “AFT" trigger window after the positron window
@ Sensitivity to dark noise: inject random trigger data into MC simulation

(SKDetSim — GEANT3) for cut optimization.

@ Preselection: define candidate neutron peaks with Nig > 5

9/15



Selecting neutrons: final step

Use a Boosted Decision Tree (BDT) to tag neutron candidates.

o Neutron tagging performance

Very preliminary
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e Final performance: 0.3 — 3% background acceptance
18 — 30% signal efficiency.
@ Expect considerable performance enhancement after Gadolinium
doping [see next talk by Lluis Marti Magro]. 10/15



Analysis procedures

Supernova model-independent analysis
@ Low energy analysis: 12 — 30 MeV reconstructed positron energy
@ Atmospheric CC: estimate by fitting Michel spectrum in [30, 50] MeV
@ Atmospheric NC: estimate using T2K data = define 3 large energy bins
50% uncertainties for NC backgrounds — 30% uncertainties for CC
@ Bin-by-bin cut optimization and limit calculation
Spectral analysis
o Fit observed energy spectrum by DSNB + atmospheric spectra
@ Need to eliminate spallation + solar backgrounds
= [16, 80] MeV energy range

@ Atmospheric spectral shapes: use sidebands in Cherenkov angle for NC
and p/m. Assume O(100%) uncertainties on normalizations and
shapes except for Michel spectrum.
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Supernova model-independent analysis

No excess observed — Significantly improved exclusion bounds at low energy

Events/bin
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o Neutron tagging allowed to bring the analysis threshold from 16 to
12 MeV (limit set by reactor neutrinos and atmospheric backgrounds)

@ Current limits within a factor of a few of optimistic DSNB scenarios.
@ SK-Gd will probe a significant fraction of the DSNB parameter space

@ Even with Gd, important uncertainties from NC ~ emission and
neutron multiplicity

12/15



Spectral analysis

Combination of SK-I to IV for the Ando (optimistic) model

30 ery preliminary)|
3
225
o
320
€
§
315
b
510
£ +
20 iy
L | A b
o .
45| Cherenkov angle Cherenkov angle Cherenkov angle
> 20-38° 38-50° 78-90°
]
=
20
0
]
€
§ s
¢
]
5 1
3
3
£ |
T pufts
T i = T
s s 7 o 7

% 50 75 B3
Positron energy (MeV)

No neutron tagging

Neutron tagging

K-l
K-l
SK-ll
—= SK-IV (ntag)
\ ——- SKAV

Likelihood
| | !
= e e
N o N
a5 o

-1.50

-1.75

—— Combined -

\\
\ \ Very preliminary
\
\

75 10.0 125 15.0 17.5 20.0
SRN events/year

@ Slight excess at low energy without neutron tagging
@ Current 90% C.L. limits on the Ando model flux (1.7 cm~=2/s):

SK-IV (no neutron tagging) :

SK-IV (neutron tagging):
Combined (22.5 x 2853 kton.day) :

(I)g() =49 Cm72/S
Pgy = 3.8 cm~?/s

Pgg = 2.7 cm™? /s 13/15



Conclusion

o First analysis of the diffuse supernova neutrino background with the
full SK-1V dataset and neutron tagging capabilities.

@ The most optimistic DSNB models are tantilizingly close...maybe a
discovery in Super-K Gd?

@ One lesson to remember: atmospheric NC backgrounds will need to be
fully characterized in other experiments, such as the Intermediate
Water Cherenkov Detector projet in Hyper-Kamiokande.

Stay tuned for the near and far future!
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Thank you for your attention
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