The Diffuse Supernova Neutrino Background in Super-Kamiokande

Sonia El Hedri, for the Super-Kamiokande collaboration

ICHEP 2020

July 30, 2020

The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

2-3 galactic supernovae/century 1 SN/s in the observable Universe

Y. Ashida

$$\Phi(E) = \frac{c}{H_0} \int_0^{z_{max}} R_{\rm SN}(z) \, F_\nu[E(1+z)] \frac{\mathrm{d}z}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} \label{eq:phi}$$

- Aggregate properties of core-collapse supernovae
- All flavors of neutrinos, redshifted
- Elusive low energy signal

The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

2-3 galactic supernovae/century 1 SN/s in the observable Universe

$$\Phi = \int \left[egin{array}{ll}
u & {
m emission} \ {
m (black hole} \ {
m fraction} \ {
m } \end{array}
ight]$$

$$\Phi = \int \left[\begin{array}{c} \nu \text{ emission} \\ \text{(black hole} \\ \text{fraction)} \end{array} \right] \otimes \left[\begin{array}{c} \text{Star} \\ \text{formation} \end{array} \right] \otimes \left[\begin{array}{c} \text{Universe} \\ \text{expansion} \end{array} \right]$$

- Aggregate properties of core-collapse supernovae
- All flavors of neutrinos, redshifted
- Elusive low energy signal

Super-Kamiokande: A cheat sheet

- Kamioka Mine, Japan
- 50 kton Water Cherenkov detector
- Water constantly recirculated and purified
- 11129 Inner Detector PMTs 50 cm, 3 ns resolution
- Energy coverage
 4 MeV to ∼TeV
- Currently in phase VI, doping with Gadolinium just started!
- Current study: phase IV longest data-taking period (2008-2017) 2790.1 live days

Super-Kamiokande: A cheat sheet

- Kamioka Mine, Japan
- 50 kton Water Cherenkov detector
- Water constantly recirculated and purified
- 11129 Inner Detector PMTs 50 cm, 3 ns resolution
- Energy coverage 4 MeV to \sim TeV
- Currently in phase VI, doping with Gadolinium just started!
- Current study: phase IV longest data-taking period (2008-2017) 2790.1 live days

The DSNB in Super-Kamiokande

Detecting antineutrinos via Inverse Beta Decay (IBD)

- 5-20 events/year Energy range 12-80 MeV
- Need to characterize spallation and atmospheric backgrounds and identify the neutrons

The DSNB in Super-Kamiokande

Detecting antineutrinos via Inverse Beta Decay (IBD)

- [Beacom and Vagins, Phys. Rev. Lett., 93:171101, 200]

 5-20 events/year Energy range 12-80 MeV
- Need to characterize spallation and atmospheric backgrounds and identify the neutrons

The three pillars of the DSNB analysis

After basic noise reduction cuts:

- I Spallation cuts
 - Remove radioactive isotopes produced by cosmic muons
- II Atmospheric background reduction/characterization
 - Remove atmospheric signals with pions/muons/gammas
 - Estimate spectral shapes of low energy atmospheric neutrinos
- III Neutron tagging
 - Possible only since SK-IV
 - Identify neutron capture signal in water

Spallation backgrounds

Radioactivity induced by cosmic muon spallation in water

See talk by L. Bernard, 29/07

- About one muon every two minutes causes spallation in SK
- Needs to be reduced by $\mathcal{O}(10^4)$
- Main signatures $>99\% \quad \beta \text{ decays: } A \rightarrow e^{\pm} + \nu \\ <1\% \quad \text{IBD-like (9Li): } A \rightarrow e^{\pm} + n$
- Isotopes' half-lives up to 13 s \Rightarrow correlations over large time scales!
- No existing simulation in WC detectors

Reduction strategy:

- Identify isotope clusters and neutrons from muon showers
- Investigate correlations between muons and candidate events

Spallation: hunting for correlations

Pair each candidate event with muons up to $30\ \mathrm{s}$ before Investigate correlations using a likelihood analysis

Observables

- Δt , L_t, L_l: distance and time difference
- resQ: charge deposited by the muon in addition to minimum ionization

Extracting distributions

Final performance: > 90% background rejection (> 99% on $^9 \text{Li}$) 40-90% signal efficiency (depending on reconstructed energy)

Evaluating and reducing atmospheric neutrinos

- ullet Categories: NC and μ/π (reducible), u_e CC and decay electrons (irreducible).
- ullet For NC and μ/π : high efficiency cuts on the Cherenkov light pattern.

Estimating normalization and spectral shapes:

- $\mathcal{O}(100\%)$ uncertainties on rates and spectral shapes below 100 MeV except for decay electrons (measured Michel spectrum from stopping muons).
- Strategies: Use T2K to estimate cross-sections and efficiencies (NC backgrounds), or use sidebands in energy and Cherenkov angle.
 [Y. Ashida, Ph D. thesis (2019)]

Selecting neutrons: a needle in a haystack

Neutron capture occurs near the positron vertex

- New in SK-IV: "AFT" trigger window after the positron window
- Sensitivity to dark noise: inject random trigger data into MC simulation (SKDetSim – GEANT3) for cut optimization.
- Preselection: define candidate neutron peaks with $N_{10} > 5$

Selecting neutrons: final step

Use a Boosted Decision Tree (BDT) to tag neutron candidates.

- Final performance: 0.3-3% background acceptance 18-30% signal efficiency.
- Expect considerable performance enhancement after Gadolinium doping [see next talk by Lluis Marti Magro].

Analysis procedures

Supernova model-independent analysis

- ullet Low energy analysis: 12-30 MeV reconstructed positron energy
- \bullet Atmospheric CC: estimate by fitting Michel spectrum in [30,50]~MeV
- Atmospheric NC: estimate using T2K data \Rightarrow define 3 large energy bins 50% uncertainties for NC backgrounds 30% uncertainties for CC
- Bin-by-bin cut optimization and limit calculation

Spectral analysis

- Fit observed energy spectrum by DSNB + atmospheric spectra
- Need to eliminate spallation + solar backgrounds $\Rightarrow [16,80]$ MeV energy range
- Atmospheric spectral shapes: use sidebands in Cherenkov angle for NC and μ/π . Assume $\mathcal{O}(100\%)$ uncertainties on normalizations and shapes except for Michel spectrum.

Supernova model-independent analysis

No excess observed – Significantly improved exclusion bounds at low energy

E _v region [MeV]	13.3-19.3	19.3-25.3	25.3-31.3
SK-IV 2970 days (Expected)	9.48	1.35	0.82
SK-IV 2970 days (Observed)	9.08	2.22	0.35
Nakazato+15 (Minimum, NH)	0.337	0.089	0.026
Horiuchi+09 (6 MeV, Maximum)	2.534	0.887	0.314
Ando+03 (updated at NNN05)	2.652	0.796	0.261

- Neutron tagging allowed to bring the analysis threshold from 16 to
 MeV (limit set by reactor neutrinos and atmospheric backgrounds)
- Current limits within a factor of a few of optimistic DSNB scenarios.
- SK-Gd will probe a significant fraction of the DSNB parameter space
- \bullet Even with Gd, important uncertainties from NC γ emission and neutron multiplicity

Spectral analysis

Combination of SK-I to IV for the Ando (optimistic) model

- Slight excess at low energy without neutron tagging
- Current 90% C.L. limits on the Ando model flux $(1.7 \text{ cm}^{-2}/\text{s})$:

SK-IV (no neutron tagging) :
$$\Phi_{90} = 4.9 \text{ cm}^{-2}/\text{s}$$

SK-IV (neutron tagging) : $\Phi_{90} = 3.8 \text{ cm}^{-2}/\text{s}$
Combined (22.5 × 2853 kton.day) : $\Phi_{90} = 2.7 \text{ cm}^{-2}/\text{s}$

 $= 2.7 \text{ cm}^{-2}/\text{s}$ $_{13/15}$

Conclusion

- First analysis of the diffuse supernova neutrino background with the full SK-IV dataset and neutron tagging capabilities.
- The most optimistic DSNB models are tantilizingly close...maybe a discovery in Super-K Gd?
- One lesson to remember: atmospheric NC backgrounds will need to be fully characterized in other experiments, such as the Intermediate Water Cherenkov Detector projet in Hyper-Kamiokande.

Stay tuned for the near and far future!

Thank you for your attention