New results from the CUORE experiment

Andrea Giachero

University & INFN of Milano-Bicocca

ICHEP 2020 | PRAGUE

Nuclear Double Beta Decay

Very rare radioactive decay where the charge of the nucleus changes by two units

• $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$ $(2\nu\beta\beta)$

Allowed in the Standard Model for even-even nuclei and already observed with $T_{\rm 1/2}>10^{18}\,y$

• $(A,Z) \rightarrow (A,Z+2) + 2e^ (0\nu\beta\beta)$

Forbidden by Standard Model ($\Delta L=$ 2), expected with $T_{1/2}>10^{25}$ y

- L-violation, i. e. creation of a pair of electrons
 - + the discovery of $0\nu\beta\beta$ decay would imply the violation of the SM predicted accidental simmetries
- Key tool to study neutrinos
 - Majorana or Dirac nature ($\nu = \overline{\nu} \text{ or } \nu \neq \overline{\nu}$))
 - + ν mass scale and ordering (inverted or normal hierarchy)
 - · CP-violation in the lepton sector

Andrea Giachero

$\mathbf{0}\nu\beta\beta$ half-life time

- + $0\nu\beta\beta$ is a nuclear process:
 - 2nd order transition: $(A, Z) \rightarrow (A, Z + 2)$
 - even-even nuclei: β -decay is forbidden
- half-life expression can be factorized as:

 $\left[t_{1/2}^{0
u}
ight]^{-1} = G_{0
u} \, |\mathcal{M}|^2 F$

- $G_{0\nu}$: Phase Space Factor (PSF, atomic physics)
- \mathcal{M} : Nuclear Matrix Element (NME, nuclear physics)
- F: New Physics Term
 - \Rightarrow in case of 3 light neutrino exchange:

 $F = |m_{\beta\beta}|^2$

where $m_{\beta\beta}$ is the Majorana mass

 Absolute value of the ee-entry of the neutrino mass matrix

•
$$|m_{\beta\beta}| = \left| \sum_{i=1,2,3} e^{i\xi_i} |U_{e_i}^2| m_i \right|$$

 U can be identified with the mixing matrix of the oscillation analysis
 F. Capozzi, et al., arXiv:1804.09678 [hep-ph]
 F. Capozzi, et al., Phys. Rev. D 95 (2017) 096014

•
$$U \equiv U|_{\text{osc.}} \cdot \text{diag}\left(e^{-i\xi_1/2}, e^{-i\xi_2/2}, e^{i\phi - i\xi_3/2}\right)$$

- 1 CP-violating + 3 Majorana phases
- Only two phases play a *physical* role

$$|\mathbf{m}_{\beta\beta}| = \left| \mathbf{e}^{i\alpha_1} \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + \mathbf{e}^{i\alpha_2} \cos^2 \theta_{13} \sin^2 \theta_{12} m_2 + \sin^2 \theta_{13} m_3 \right|$$

Experimental search for $0\nu\beta\beta$

- Detection: energy (track) of the 2 emitted e⁻
 - monochromatic peak at the Q-value of the decay (Q $_{\beta\beta}$)
 - smearing due to finite energy resolution
- Observable: decay half-life of the isotope, $t_{1/2}^{0\nu}$
 - in the case of a peak in the energy spectrum

$$t_{1/2}^{o_{
u}} = \ln 2 \cdot T \cdot \varepsilon \cdot rac{N_{etaeta}}{N_{\mathsf{peak}}} \qquad \left(rac{\delta t_{1/2}^{o_{
u}}}{t_{1/2}^{o_{
u}}} = rac{\delta N_{\mathsf{peak}}}{N_{\mathsf{peak}}}
ight)$$

• if no peak is detected, the sensitivity corresponds to the maximum signal that can be hidden by the background fluctuations $n_B = \sqrt{MTB\Delta E}$

$$\frac{S_{1/2}^{0\nu}}{(MT)} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n}{n_{\sigma} \cdot \sigma_{B}} = \ln 2 \cdot \frac{1}{n_{\sigma}} \cdot \frac{x N_{A}}{\mathcal{M}_{A}} \cdot \eta \cdot \varepsilon \sqrt{\frac{MT}{B \Delta E}}$$
(MT is the total exposure)

M = detector mass T = measuring time B = background level $\Delta E =$ energy resolution $\varepsilon =$ detection efficiency $\eta =$ candidate isotopic abundance

- Good energy resolution ΔE
 - + only protection against 2uetaeta spectrum tail

•
$$R_{0
u/2
u} \propto \left(rac{Q_{etaeta}}{\Delta}
ight)^6 rac{t_{1/2}^{2
u}}{t_{1/2}^{0
u}}$$

- Very low background B
 - underground location + shielding
 - radio-pure materials for detector and surrounding parts
 - analysis rejection techniques
- Large isotope mass M
 - present: some tens up to hundreds of kg
 - · tonnes required to cover the IH region

Choice of the isotope

- + Value of ${\sf Q}_{etaeta} o$ influences the backgroud
 - + > 2.6 (> 3.3) MeV end-point of main γ s (β s)
 - avoid radioactivity peak position
 - + $\,<$ 4.01 MeV starting point of main lphas
- · High isotopic abundance
 - ease of material enrichment (technologically + economically)
- · Availability of the isotope
 - + tonnes required for future $0\nu\beta\beta$ experiments
 - ightarrow high cost + large procurement time
- · Compatibility with a detection technique

Most suitable isotope + detector combination

- Complete energy thermalization: ionization, excitation \Rightarrow heat \Rightarrow calorimetry;
- $\Delta T = \Delta E/C$ where ΔE is the released energy and C the total thermal capacity;
 - Absorber with very low thermal capacity: $C \downarrow \Rightarrow \Delta T \uparrow;$
 - Debye law for superconductors below T_C and dielectric: $C \propto (T/\Theta_D)^3$;
 - A very low temperature is needed: $T \downarrow \Rightarrow C \downarrow \Rightarrow \Delta T \uparrow \Rightarrow (T = 10 \div 100 \text{ mK});$
- Limit to energy resolution \Rightarrow statistical fluctuation of internal energy $\Delta E_{rms} = \sqrt{k_B T^2 C}$;

•
$$\Delta T(t) = \frac{\Delta E}{C} e^{-t/\tau}$$
 with $\tau = \frac{C}{G}$ and G thermal conductance.

Decay under study: ¹³⁰Te \rightarrow ¹³⁰Xe + e⁻

Absorber

Why ¹³⁰Te:

- High isotopic abundance: $34.167\% \Rightarrow$ no need for enrichment:
- Q-value (2527.5 keV) almost above the natural γ background (>2615 eV) below the natural α background (<4.01 MeV):

Why TeO₂:

- · Easy to grow big crystals with low radioactive contaminations;
- Good mechanical properties:
- Low heat capacity (dielectric and diamagnetic).

Sensor

NTD-Ge thermistor:

- · Germanium crystal doped by thermal neutrons;
- Operate in VRH (Variable Range Hopping) regime:

$$R(T) = R_0 e^{\left(\frac{T_0}{T}\right)^{\frac{1}{2}}}$$

$$R_0 = 1 \Omega$$
 , $T_0 = 4 \,\mathrm{K}$

Thermal link: PTFE holders and gold wires Joule heater: for thermal gain calibration Thermal bath: Cu structure (cryostat) Absorber: 5×5×5 cm3 TeO2 crystal Thermistor: NTD Ge semiconductor

NTD-Ge Thermistor

TeO₂ crystals

 ΔT

E

Operating at 10 mK with C~n I/K

Andrea Giachero

 $100 \,\mu K$

ICHEP2020

Cryogenic Underground Observatory for Rare Events

The larger thermal detector array ever built

CUORE Detector:

- Custom Cryostat to reach T_0 \simeq 10 mK;
- Array of 988 TeO₂ crystals;
- Total mass of 742 kg;
- 19 towers, 13 floors, 4 crystal for each floor;
- TeO_2 absorber 5 \times 5 \times 5 cm^3 (750 g each);
- Stringent radiopurity control on materials and assembly;
- Target energy resolution: 5 keV @ 2615 (FWHM);
- Background aim: 10⁻² count/keV/kg/yr;
- $t_{1/2}^{0\nu}$ sensitivity in 5 years:

$$t_{1/2} \geq$$
 9.0 \cdot 10²⁵ yr @ 90% C.L $m_{etaeta} \leq (45-211)\,{
m meV}$

- All 19 towers installed between July-August 2016;
- First cool down in December 2016;
- Base temperature 7 mK in 26/01/2017;

first event observed the same day;

Pulse Main Dilution Tube Platform 300K 40K -Vacuum 4K -Chamber Still -Inner Heat Vacuum EXchan. Chamber Mixing Top Chamber Cryostat CUORE detector Tower Support 1m Internal Shield

Rendering of the CUORE cryostat

Rendering of the cryostat support structure

The coldest cubic meter in the known Universe

- Powerful multistage cryogen-free cryostat
 - · Precooled by a fast cooling system;
 - Pulse Tubes (PTs).
 - ³He/⁴He dilution refrigerator
- cooling power: 5 μ W at 10 mK
- Cooldown time around 1 month:
- Cryogenic vessels and shielding:
 - 13 tonnes < 4 K
 - 5 tonnes < 50 mK
 - 1500 kg @ 10 mK (detectors + materials)
- External Shielding:
 - 30 cm lead
 - 18 cm polyethylene + 2 cm borated material
- Mechanical vibration isolation:
- Active noise cancellation:

CUORE data taking

- 900(min)-950(max) (over 988) valid calorimeters;
- 7.73 keV FWHM @ 2615 keV;
- 7.0 keV FWHM @ Q-value;
- 372.5 kg·yr of TeO₂ exposure accumulated;
- + \sim 10 keV of trigger thresold;
- 40 keV of analysis thresold;

Stable conditions allowed continued data taking with minimal onsite activity during recent lockdowns

Andrea Giachero

ICHEP2020

- Bayesian Analysis (with BAT)
- Likelihood model: flat continuum (BI), and posited peak for $0\nu\beta\beta$ (rate), peak for ⁶⁰Co (rate+position)
- Unbinned fit on physical range (rates non negative), unifor prior om $\Gamma_{0\nu};$
- Systematics: repeat fits with nuisance parameters, allow negative rates (<0.4% impact on limit)

- No evidence for 0 $\nu\beta\beta$ decay of 130Te;
- Background index in the ROI:

 $B = (0.0138 \pm 0.0007) \, \mathrm{cnts/keV/kg/yr}$

• $t_{1/2}^{0\nu}$ sensitivity (90% CL):

$$t_{1/2}^{0
u}>$$
 3.2 \cdot 10²⁵ yr

• Limit on the neutrino mass:

 $m_{etaeta} < (75-350)\,{
m meV}$

- Reconstruct CUORE continuum background;
- GEANT4 simulation + measured detector response function to produce expected spectra;
- 62 sources considered, Bayesian fit with flat priors (except for muons);
- Exploit coincidences and detector self-shielding to constrain location of sources

• CUORE-0 (Eur. Phys. J. C77 (2017) 1, 13)

$$t_{1/2}^{2
u} = [8.2\pm0.2_{(\text{stat})}\pm0.6_{(\text{sys})}]\cdot10^{20}\,\text{yr}$$

CUORE (preliminary)

$$t_{1/2}^{2\nu} = \begin{bmatrix} 7.71^{-0.08}_{-0.06 \text{ (stat)}} \stackrel{-0.17}{_{-0.15 \text{ (stat)}}} \end{bmatrix} \cdot 10^{20} \text{ yr}$$

• reduction of a factor 3 on both statistical and systematic uncertainties

- · CUORE data taking continues smoothly
 - \Rightarrow stable conditions allowed continued data taking with minimal onsite activity during recent lockdowns;
- CUORE will reach the target sensitivity in a few years, approaching the Inverted Hierarchy Region
 a next unblinding is foreseen at 1 tonne year

Andrea Giachero

ICHEP2020

- The study of frontier subjects in neutrino physics require the use of frontier detectors;
- Observation of $0\nu\beta\beta$ decay would prove that neutrinos are Majorana particle
- CUORE accumulated over 400 kg·yr exposure, new data is being acquired;
- ... and will approach the Inverted Hierarchy Region in a few years;
- Successfull performance of CUORE justifies future developments of cryogenics calorimeters;

 \Rightarrow CUPID program: Cuore Upgrade with Particle IDentinficaion

(see Davide Chiesa's talk just after this)