DE LA RECHERCHE À L'INDUSTRIE

Neutrino Oscillation Results From the T2K Experiment

Laura Munteanu, CEA Saclay/IRFU/DPhP

On behalf of the T2K Collaboration ICHEP2020 (Prague, Czech Republic) July 28th 2020

- Neutrino Oscillations
- The T2K Experiment
- Oscillation Analysis Strategy
- Oscillation Parameters Measurements
- Future Plans
- Summary & Outlook

NEUTRINO OSCILLATIONS PHYSICS

- What's keeping long-baseline neutrino oscillation physicists up at night: Normal hierarchy Inverted hierarchy
 - $\circ~~CP$ violation phase δ_{CP}
 - $\circ \quad \theta_{23} \text{ octant}$
 - MASS ORDERING
 - CONSISTENCY OF THE WHOLE PMNS FRAMEWORK

How we measure oscillation PARAMETERS

<u>Phys.Rev.D 88 (2013) 3, 032002</u>

- Measure v_{μ} disappearance and v_{e} appearance
- Maximum oscillation probability is at **600 MeV** for T2K baseline (295 km)
- Use off-axis effect to obtain narrow flux distribution at 600 MeV and reduce v_e contamination
- δ_{CP} inferred from v_e /anti- v_e appearance asymmetry
- Matter effects give small dependence on mass hierarchy (10%)

DE LA RECHERCHE À L'INDUSTR

THE T2K EXPERIMENT

Near Detector at 280 m (ND280)

- Two fine grained scintillating detectors FGD1 (C) and FGD2 (C,O)
- 3 Time Projection Chambers (TPCs)
- One Upstream π^0 detector
- Surrounded by ECal and UA1 magnet
- 2.5° off-axis
- Constrains flux and cross-section systematics in **oscillation analysis**

Our near detectors are also used for exotic searches and cross-section measurements (see Ka Ming Tsui's talk!)

- 1000 m under the Mount. Ikeno
- 50 kton of pure water

39.3m

- 22.5 kton of fiducial mass
- \sim 11,100 inner detector (ID) PMTs (20'')
- 1,885 outer detector (OD) PMTs (8'')
- direction/e- μ ID based on Cherenkov ring pattern

DATA TAKING STATUS SINCE 2009

- This year we've reached **515 kW** stable operation beam power
- We now have a total of 1.97×10^{21} POT in v mode and 1.63×10^{21} POT in anti-v mode.

OSCILLATION ANALYSIS STRATEGY

Oscillation Parameters

Laura Munteanu - T2K

Laura Munteanu - T2K

- Primary interactions are simulated with FLUKA and then reweighted to **NA61/SHINE (external hadron production experiment at CERN)** data
- Previously: NA61/SHINE data was obtained with a thin graphite target. New this year: we use NA61/SHINE data obtained with a full T2K **replica target**.
- Flux uncertainties reduced from ~8% to 5%

DE LA RECHERCHE À L'INDUSTRIE

DE LA RECHERCHE À L'INDUSTRIE

- Three dominant scattering processes at T2K energies: CCQE (and 2p2h), RES, DIS
- Define samples enriched in each of these processes using **reconstructed pion multiplicity**

DE LA RECHERCHE À L'INDUSTRI

Cea ND280 SAMPLES

- Three dominant scattering processes at T2K energies: CCQE (and 2p2h), RES, DIS
- Define samples enriched in each of these processes using **reconstructed pion multiplicity**
- Samples divided between FGD1 (C) and FGD2 (C,O) and neutrino-antineutrino beam modes
- Also **wrong sign sample** (neutrino background in antineutrino beam mode)

CROSS-SECTION MODEL

- Baseline nuclear model: moved from Relativistic Fermi Gas + RPA (2018) to a **tuned Benhar Spectral Function**.
- 2p2h: new uncertainty on energy dependance of the cross-section
- **Removal energy** (energy to extract a bound nucleon): much smaller uncertainty due to constraints from electron scattering data.
- Correlated pion FSI errors between near and far detector
- Improved multi-pi and DIS treatment

• Our model of cross-section and flux has good flexibility to reproduce well the data (ND fit **p-value of 74%**)

Prefit

• Before the fit there are no correlations between the flux and the cross-section parameters

- Before the fit there are no correlations between the flux and the cross-section parameters
- Near detector fit introduces (anti)correlations between flux and cross-section parameters

- Before the fit there are no correlations between the flux and the cross-section parameters
- Near detector fit introduces (anti)correlations between flux and cross-section parameters
- Lower prefit uncertainties from ~13% to ~4% at far detector

Sample	FHC 1Rµ	RHC 1Rµ	FHC 1Re	RHC 1Re	FHC 1Re1de
Flux+Cross section (before ND)	11.1%	11.3%	13.0%	12.1%	18.7%
Flux+Cross section (after ND)	3.0%	4.0%	4.7%	5.9%	14.3%

SK SAMPLES AND DATA

- Five samples at SK, single ring selections based on lepton flavour
- Red bands: systematic uncertainties
- 1 ring μ samples (dominated by CC0 π events)

- Five samples at SK, based on the lepton flavour and the ring multiplicity
- Red bands: systematic uncertainties
- Uncertainties on electron-like samples 4.7% in neutrino mode, 5.9% in antineutrino mode and **14.3%** in Michel electron sample
- 1-ring-electron (enriched in CC0π events) and 1-ring-e-1-Michel-electron (enriched in CC1pi events) -> larger systematic errors

DE LA RECHERCHE À L'INDUSTR

APPEARANCE RESULTS

• T2K contours for θ_{13} are fully compatible (better than 1 σ) with PDG2019 value - all the other results shown in this talk are shown with this reactor constraint applied

- δ_{CP} CP violating values are preferred
- Quantitatively: we exclude 35% of all δ_{CP} values at 3σ
- CP conserving values $(0,\pi)$ excluded at 90% CL
- Small preference for NH

• Slight preference for upper octant

- We know our models or fitting procedure aren't perfect or foolproof
- Test the robustness using alternative models, tunes or educated guesses
 - e.g.: alternative 2p2h models; ND280 or external data-driven tunes.
- After the robustness studies we performed, the largest impact we saw was a small bias of 1.4×10^{-5} on Δm^2_{32} which we've added as an additional uncertainty
- The effect of including the largest uncertainty from the robustness studies on the δ_{CP} intervals is to move them by **0.073 to the left** and **0.080 to the right**.

- J-PARC Main Ring Upgrade for High Intensity Neutrino Beam
 - Now operating stably at 515kW target is **1 MW**
- Near Detector Upgrade see Davide Sgalaberna's talk
- SK Gd loading -> enhance neutron detection
- New and improved selections are being included at both ND280 and SK for the next analysis
- Joint fits
 - **T2K-SK** atmospherics
 - T2K-NOvA see next talk on new NOvA results
 - Combining different neutrino data sets and energies helps lift degeneracies and reach better sensitivity

- The new results obtained by T2K exclude 35% of δ_{CP} values at the 3 σ level
- Slight preference for **upper octant of** θ_{23} **and normal hierarchy**
- Many improvements in this analysis
 - nearly **twice as much data** as in the previous analysis at the **near detector**
 - 33% more data at the far detector in neutrino mode
 - NA61/SHINE replica target flux tune
 - huge improvements in systematic treatment of cross-section uncertainties within the fitting framework (in particular, moving to a Spectral Function nuclear model and improved description of removal energy systematics)
 - generally **improved** fitter framework
- Exciting future plans
 - ND280 Upgrade
 - Joint Fits

DE LA RECHERCHE À L'INDUSTRI

BACK-UP

- ND280 detector uncertainties obtained by throwing toys according to the detector systematics
- The near detector fit is performed in muon momentum and angle
- ND280 detector uncertainties are summarized in a covariance matrix indexed by the near detector binning in momentum and angle
- Previously: the MC statistical errors in this procedure were taken as the Poisson error on the bin content
- This year: we use the Barlow-Beeston procedure to account for the finite size of the MC.

SO WHAT HAS CHANGED?

DE LA RECHERCHE À L'INDUSTRI

SO WHAT HAS CHANGED?

- Previous results (<u>Nature</u>, <u>580(7803)</u>, <u>339–344</u>) presented a slightly tighter constraint on δ_{CP} although the general conclusions on CP violation remain the same
 - This has multiple sources:
 - the cross-section model
 - the reactor angle PDG2019 constraint
 - improved SK calibration and event reprocessing
 - adding SK run 10 (previously only runs 1-9)

DE LA RECHERCHE À L'INDUSTRI

DE LA RECHERCHE À L'INDUSTR

- **On-axis** detector
- Monitors beam position
- Excellent beam position and event rate stability since the beginning of T2K data taking

- δ_{CP} CP violating values are preferred
- Quantitatively: we exclude 35% of all δ_{CP} values at 3σ
- CP conserving values $(0,\pi)$ excluded at 90% CL
- 0 excluded at 2σ but π not quite at 2σ

T2K Run 1-10 Preliminary

• Slight preference for upper octant and normal hierarchy Posterior probability

