

Recent Cross-section Results from the T2K Experiment

Ka Ming Tsui for the T2K Collaboration K.M.Tsui@liverpool.ac.uk

UNIVERSITY OF LIVERPOOL

2020/7/28

Neutrino interactions at T2K

Neutrino interaction measurements at TZK

2020/7/28

Joint Carbon + Oxygen CC0 π cross-section at **TZK**

2020/7/28

T2K Cross-section@ICHEP 2020

Reconstructed p_{_} [GeV/c]

 χ^2 including all 58 C+O bins

- GENIE v3 LFG hN (48.9) NuWro LFG (64.7)

NEUT SF (110.3) RMF(1p1h)-SusaV2(2p2h) (90.6)

- χ^2 dominated by high statistics forward bins
- Forward bins: favor more "simple" CCQE Fermi gas nuclear models (LFG), largely due to substantial "RPA" low energy transfer suppression
- High angle bins: LFG underestimates data. CCQE more affected by nucleon form factors, but cannot explain C/O difference
- Need to improve non-QE (2p2h, abs FSI) currently based on a Fermi-gas ground state

Joint v + anti-v CC0 π cross-section in FGD1(CH)

- Phys. Rev. D 101, 112001 (2020)
- Similar conclusions to C/O analysis
 - Need reduction of cross-section at forward angles, enhancement at higher angles for LFG
- Large $\chi^2 \rightarrow$ no model describes the whole data well

2p2h model, Full (shape only) χ^2 NEUT LFG+2p2h χ^2 = 366.7(459.1)/116

- Martini et al.
$$\chi^2 = 368.6(573.4)/96$$

2020/7/28

$CC1\pi^+$ cross-section at TZK

- "Uncharted territory"
 - Less theoretical input
 - Less data
- Models show mostly normalization differences
- Let's dig deeper...

$CC1\pi^+p$ cross-section in transverse kinematic imbalance (TKI): Powerful tools to characterize nuclear effects

2020/7/28

$CC1\pi^+p$ cross-section in TKI (CH)

- Data slightly prefers more sophisticated nuclear models
- Carbon cross-section correlated with hydrogen (~20%)
- $\delta p_{TT} \otimes p_N$ more sensitive to initial nuclear model
- $\delta \alpha_T$ more sensitive to FSI (flat w/o FSI)

CZK cross-sections outlook

- More joint measurements
 - On/off axis, C/O/ $\nu/\overline{\nu}$, $0\pi/1\pi$...
- New measurements of hadronic kinematics
 - TKI, calorimetry, π/p kinematics...

Validate theoretical models in all aspects & understand neutrino interactions in (next-gen) oscillation experiments

The **TZK** Collaboration (2020)

2020/7/28

2020/7/28

TABLE V. $\chi^2_{tot} (\chi^2_{shape})$ calculated as in Eq. (9) [Eq. (10)] for the full measurement of oxygen and carbon cross sections per nucleon, for oxygen and carbon neglecting the last $\cos \theta_{\mu}$ bin, for oxygen only, for carbon only and for the O/C ratio. The number of degrees of freedom (ndof) for each χ^2_{tot} comparison is also shown.

Generator	Result	Total χ^2 (shape only) (ndof = 58)	χ^2 w/o last $\cos \theta_{\mu}$ bin (ndof = 50)	Only O χ^2 (ndof = 29)	Only C χ^2 (ndof = 29)	O/C ratio χ^2 (ndof = 29)
NEUT 5.4.1 LFG	regularised	44.8 (58.6)	17.9 (21.1)	26.0 (34.5)	15.2 (20.1)	30.8
	unregularised	44.4 (62.3)	17.3 (22.5)	26.4 (39.1)	14.0 (19.4)	30.6
NEUT 5.4.0 SF	regularised	111.0 (156.8)	45.3 (69.0)	50.0 (77.6)	40.1 (58.3)	31.7
	unregularised	116.8 (166.7)	45.1 (70.1)	53.7 (86.5)	38.6 (56.2)	32.2
NuWro 18.2 LFG	regularised	64.7 (83.7)	21.0 (30.5)	31.9 (45.0)	23.5 (31.5)	33.1
	unregularised	66.8 (88.7)	21.1 (32.1)	32.9 (49.9)	22.6 (30.6)	33.5
NuWro 18.2 SF	regularised	114.5 (180.1)	50.2 (80.9)	50.1 (86.1)	44.8 (70.3)	34.2
	unregularised	119.2 (189.0)	48.7 (80.9)	52.7 (94.8)	42.6 (67.4)	33.9
Genie 3 LFG hN	regularised	48.9 (58.5)	22.3 (24.6)	24.9 (32.1)	18.4 (22.3)	33.5
	unregularised	46.6 (60.0)	20.1 (23.8)	24.7 (35.6)	16.3 (20.4)	34.0
Genie 3 LFG hA	regularised	55.4 (62.0)	22.9 (25.5)	27.8 (34.3)	19.8 (22.3)	32.3
	unregularised	52.9 (62.0)	21.0 (24.5)	27.7 (37.0)	17.7 (20.4)	32.6
Genie 3 SuSAv2	regularised	103.5 (105.4)	39.0 (44.7)	50.6 (57.3)	35.8 (36.8)	29.8
	unregularised	110.3 (111.3)	40.3 (45.6)	55.4 (62.8)	35.1 (35.5)	30.1
RMF (1p1h)	regularised	90.6 (97.5)	48.2 (60.5)	31.4 (37.8)	43.9 (51.3)	31.3
+ SuSAv2 (2p2h)	unregularised	95.8 (102.2)	49.3 (60.7)	34.0 (42.1)	41.9 (48.1)	30.7
GiBUU	regularised	112.7 (117.0)	47.2 (50.6)	46.8 (58.0)	46.6 (46.1)	39.3
	unregularised	107.5 (112.2)	41.7 (46.8)	43.5 (56.0)	41.0 (41.2)	37.0

Electron neutrino measurement arXiv:2002.11986

Selection

- Identify interactions of intrinsic $\overline{\nu}_e$ contribution to flux (ν_e is ~1% of the ν_μ) when running to produce predominantly ν_μ (FHC) and $\overline{\nu}_\mu$ (RHC)
- Major background at low reconstructed electron momentum from photons (largely from π^0 decay)
- This is constrained with a dedicated control region $_{\underline{\wp}}$

Cross section Measurement

- Detector acceptance limits measurement to: $p_e > 300 \text{ MeV/c}, \theta_e < 45^{\circ}$
- Large statistical uncertainties
- Good agreement with event generators