Search for heavy neutral lepton production at NA62 experiment

Evgueni Goudzovski

(University of Birmingham, United Kingdom)

Outline:

- 1) The NA62 experiment at CERN
- 2) Searches for HNL production: $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$
- 3) Comparison to other production and decay searches
- 4) Summary

ICHEP 2020 Prague • 28 July 2020

Kaon programme at CERN

NA62 collaboration, JINST 12 (2017) P05025

Beamline & detector

- ♦ Currently, 1 year of operation $\approx 2 \times 10^{18}$ protons on target; 4×10^{12} K⁺ decays.
- Single event sensitivities for K^+ decays: down to BR~10⁻¹².
- ★ Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) ~ 10⁻⁸.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

NA62 data collection

- Commissioning run 2015: minimum bias data (~3×10¹⁰ protons/pulse).
- Physics run 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- Physics run 2017 (161 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✤ Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- Starting Run 2 after Long Shutdown 2 in 2021 (~3×10¹² ppp).

Search for HNL production in $K^+ \rightarrow \ell^+ N$ decays

- IU_{e4}²: final result (full NA62 Run 1 data sample), PLB 708 (2020) 135599
- U_{μ4}²: preliminary result (~1/3 of NA62 Run 1 data sample), paper in preparation

Dark fermions (HNLs)

A generic possibility of **k** sterile neutrino mass states:

$$\nu_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \nu_i \quad (\alpha = e, \mu, \tau).$$

The "neutrino portal" is motivated by its relation to neutrino mass generation.

The vMSM: the most economical theory accounting for v masses and oscillations, baryogenesis, and dark matter.

[Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151]

Three Heavy Neutral Leptons (HNLs): m₁~10 keV [DM candidate]; m_{2,3}~1 GeV/c².

GeV-scale HNLs can be observed via their **production** and **decay**.

E. Goudzovski / ICHEP, 28 July 2020

Boyarsky et al., Ann. Rev. Nucl. Part. Sci. 59 (2009) 191

Data sample

- ★ Triggers used: $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+N$; Control/400 for $K^+ \rightarrow \mu^+N$.
- ✤ Numbers of K⁺ decays in fiducial volume:

 $N_{K}=(3.52\pm0.02)\times10^{12}$ in positron case; $N_{K}=(4.29\pm0.02)\times10^{9}$ in muon case.

- Squared missing mass: $m_{miss}^2 = (P_K P_\ell)^2$, using STRAW and GTK detectors.
- HNL production signal: a spike above continuous missing mass spectrum.

HNL mass resolution

Selection for each HNL mass hypothesis (m_{HNL}) includes a "mass window" condition: |m-m_{HNL}|<1.5σ_m: background is proportional to mass resolution.

Resolution is crucial to resolve possible HNL mass splitting.
[Baryogenesis: 2 quasi-degenerate mass states; Canetti et al., PRD87(2013)093006]

Acceptance & single event sensitivity

* Standard K_{e2} selection: $p_e < 30 \text{ GeV/c}$ (as in $K_{\pi\nu\nu}$ trigger).

* Auxiliary K_{e2} ($p_e < 20 \text{ GeV/c}$): smooth background near the π_{e2} threshold.

♦ Definitions: $BR_{SES} = 1/(N_K A)$, $|U_{\ell 4}|^2_{SES} = BR_{SES} / [BR(K^+ \rightarrow \ell^+ \nu) \rho_{\ell}(m_N)]$. 9

Upper limits on N(signal events)

at 90% CL, vs HNL mass hypothesis

E. Goudzovski / ICHEP, 28 July 2020

Upper limits on BR(K⁺ \rightarrow ℓ ⁺N)

HNL production searches: summary

Comparison to decay searches

(CERN-PBC-REPORT-2018-007; update: Gaia Lanfranchi, PBC meeting, 6 Nov 2019)

Comparison to decay searches

(CERN-PBC-REPORT-2018-007; update: Gaia Lanfranchi, PBC meeting, 6 Nov 2019)

NA62 preliminary: approaching the E949 (production) and T2K (decay) limits

- NA62 experiment at CERN collected a sample of
 ~6×10¹² K⁺ decays in flight during Run 1 in 2016–18.
- ↔ HNL production $(K^+ \rightarrow \ell^+ N)$ with the 2016–18 data set:
 - ✓ $O(10^{-9})$ limits on $|U_{e4}|^2$ [full data set PLB 807 (2020) 135599]; ✓ $O(10^{-8})$ limits on $|U_{\mu4}|^2$ [1/3 data set – preliminary].
- Limits on |U_{e4}|² improve over the PS191 production searches, and saturate the BBN-allowed range up to 340 MeV/c² mass.
- * NA62 sensitivity to $|U_{\ell_4}|^2$: to be improved with larger data sets.