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DUNE R V=

. . DEEP UNDERGROUND
e DUNE is a long baseline NEUTRINO EXPERIMENT

neutrino oscillation experiment
e DUNE'’s goal is to measure
neutrino oscillation
parameters
e (Good energy resolution and
event classification efficiency

Sanford Underground
Research Facility

Fermilab

is needed to accurately i
measure these parameters // i

e Neutrino events in DUNE’s y = w i
LarTPC are projected into 3 w};{ -

planes (2 induction, one fg/\ ) % ==
collection plane) 7 % % %%



Convolutional Neural Networks

DUNE Simulation
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(a) View 0: Induction Plane. (b) View 1: Induction Plane. (c) View 2: Collection Plane.

Fully Connected Layer Locally Connected Layer

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

- Spatial correlation is local ) =
- Waste of resources + we have notenough ———
training samples anyway.. .

Note: This parameterization is good
when input image is registered (e.g., "
face recognition).

Rnnznon Ranznon

Traditional artiﬁCial neural network Convolutional neural network
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We then have 3 “images”
of each event

CNNs are neural networks
specialized to taking
images, using a set of
translationally invariant
filters

This serves as an ideal
application of deep
learning techniques



What to Do with CNNs? Ou(VeE
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e CNNs can be used for either regression or classification tasks
e Regression:
o Qutputs any real number or a list of real numbers
o Fitting for particle energy, event energy, or event vertex
e Classification:
o OQOutputs a number between 0 and 1, for binary classification
o Also can output many numbers between 0 and 1, for classification into an
arbitrary number of classes
o For things like particle ID or event ID
e First I'll focus on energy regression, then on event classification
e Lastly, we will look at some novel methods



Event Energy Regression (V=
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e \We feed each plane image to a CNN, then
concatenate the outputs which outputs an

estimate of event energies L ERicl Al 2
e \We use mean absolute percent error as the . Cl - . ClZd : Cl "
“loss function”, which tells the CNN how close it Ma’1"°°‘ Ma"i’wl Maxfm‘
is during training Theertion i Inception
. . Max Pool Max Pool Max Pool
e \We use this instead of a sum of squares for T I I
robustness against outliers Incepton el Inception
e \We “weight” events by energy, so network is _L
equally likely to guess any energy Concat
1
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L Yi E 5
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v_CC Event Energy I R (\
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e Here is the resolutions applying our

. - 100,(_193 - IDUINEIPrtlaIin?inallr!

CNN’s resolution to the traditional R ]
- ve CC —— Kinematic Energy —

method for v_ CC events — B o 0
" . . . 2 - _ — nergy i

e The traditional kinematic method is s @ Emg = ?57:/%/ -
found by adding leptonic and £ F o | E
hadronic energy, individually s wl :
calibrated after adding up 2 - .
corresponding hit energies °r B
O o5 — o R

0
(RecoE-TrueE)/TrueE



v_ CC Event Energy (\

NEUTRINO

e Resolution is not only better overall, but also over different ranges of true
event energy
e Bias is also better or comparable everywhere

DUNE Preliminary DUNE Preliminary
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v_ CC Event Energy
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e CNN also robust to different types of neutrino interactions (quasi-elastic, deep
inelastic scattering, resonance)

e CNNs having a high number of degrees of freedom to allow this

DUNE Preliminary
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Events (arbitrary units)

v CC Event Energy LR (\ =

NEUTRINO EXPERIMEN

e This CNN technology can also be used
—— DUNE Fraliminary for v CC event energy
e The CNN has better resolution than
traditional method, again based on
adding up hadronic and leptonic parts
Traditional energy of muon tracks based
on track length

v, CC
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v, CC Interaction Classification

A classification CNN for v, CC event classification was also

(arXiv:2006.15052 )

Here we show results for neutrino beam (left) and antineutrino beam (right)

A number closer to 1 shows an event more likely to be v, CC
An event with classifier > 0.85 is chosen as a v_ CC event
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DUNE Simulation
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https://arxiv.org/pdf/2006.15052.pdf

v, CC Interaction Classification

NEUTRINO
Here we see selection efficiency over range of reconstructed event energy for
neutrinos
We see a maximum efficiency of around 90% near the flux peak
Slightly better efficiency in antineutrino beam
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v, CC Interaction Classification

NEUTRINO

e \Ve can do the same for v CC event classification
e Again, this is neutrinos beam (left) and antineutrino beam (right)
e If an event has a classifier > 0.5, we interpret it as a v, CC event

DUNE Simulation
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v, CC Interaction Classification

NEUTRINO

e Here is the selection efficiency over range of reconstructed event energy
e The efficiency is greater than 90% at maximum
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Other Methods Being Developed JVE
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e Sparse CNNs for Semantic Segmentation

©)

©)

e Graph Neural Networks

©)

Takes advantage of sparseness of hits in 3D pixelmaps
Has shown promise for identifying individual pixels as part
of tracks or showers

Breaks up hits into “graph” comprised as connected
nodes with information such as geometry and energy
composition

Feeds these graphs to a NN which labels individual
nodes

Has shown promise in ProtoDUNE
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Summary ou(VeE
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e CNN based energy regression has better performance for both v_ CC and v,
CC events

e CNN based event classifiers have been shown to have very good efficiency,
greater than 90% for both v_ CC and v, CC events in FHC and RHC beam
configurations

e GNNs and Sparse CNNs have shown promise in reconstructing tracks and
showers

e Better energy resolution and event selection efficiency will give us better
measurements of the oscillation parameters, and help us get the most out of
our data
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