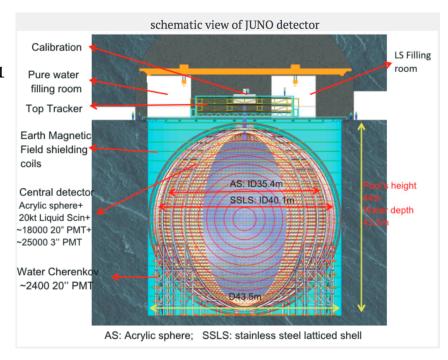
Energy and Vertex Reconstruction in JUNO

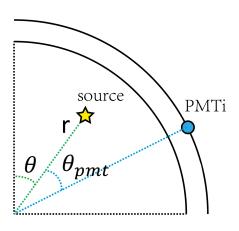
Guihong Huang for the JUNO collaboration


IHEP

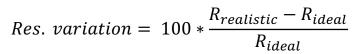
Jul.30, 2020

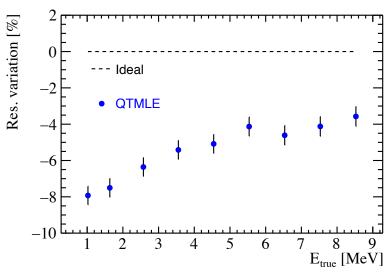
40th International Conference on High Energy Physics

The JUNO experiment


- A multi-purpose observatory
 - Determine the neutrino mass ordering
 - Precisely measure $\sin^2 2\theta_{12}$, Δm_{21}^2 , Δm_{31}^2
 - Study the solar neutrinos, supernova neutrinos, diffuse supernova neutrino background, etc.
- $3\%/\sqrt{E}$ unprecedented energy resolution
 - Total light level ~1200 pe / MeV
 - Attenuation length > 20 m @ 430 nm
 - Photocathode coverage ~75%
 - PMT detection efficiency > 27%

Charge and time combining maximum likelihood estimation


- The expected light level of PMTs $E*\mu_{i,0}(r,\theta,\theta_{pmt})$ (3-D nPE map)
- The pdfs of $t_r = t_h t_f t_d t_0$ measured by PMTs $P_T(t_r|k,d)$
- The likelihood function


$$\begin{split} &\mathcal{L}(q_{1},q_{2},\ldots,q_{N},t_{1,r},t_{2,r},\ldots,t_{N,r},k_{1}',k_{2}',\ldots,k_{N}'|\vec{r},E,t_{0}) \\ &= \prod_{unhit} e^{-\mu_{j}} \prod_{hit} \left[\left(\sum_{k=1}^{+\infty} \frac{e^{-\mu_{i}}\mu_{i}^{k}}{k!} P_{Q}(q_{i}|k) \right) P_{T}(t_{i,r}|d_{i},k_{i}',t_{0}) \right]. \end{split}$$

Performance, conclusion and outlook

- Most of the effects of the charge smearing, dark noise and vertex resolution on the energy resolution have been handled by QTMLE
- The impact of the dark noise, charge smearing and vertex resolution on the energy resolution need further studies.

