Improved Limits on Sterile Neutrino Mixing from a Joint Search of the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments

Zhuojun Hu (Sun Yat-sen University) On behalf of the Daya Bay and MINOS/MINOS+ Collaborations

Introduction

Neutrino oscillation

- A neutrino created as a certain flavor may be later measured as a different flavor
- Neutrino flavor eigenstates are superpositions of mass eigenstates
- Confirmed by a wealth of experimental data
- Most of the experimental data is consistent with the three-flavor neutrino mixing framework $(\nu_e, \nu_\mu, \nu_\tau)$

Sterile neutrino (ν_s)

- Additional neutrino states may exist provided they do not interact through any of the interactions of the Standard Model
- Could mix with active neutrinos (v_e, v_μ, v_τ)
- Well-motivated to explain the origin of neutrino masses
- Proposed as an explanation for the anomalous excess observed by the Liquid Scintillator Neutrino Detector (LSND) and MinoBooNE experiments [1]

*LSND/MinoBooNE data and fits to data assuming the presence of a new sterile neutrino state. The $\dot{\bar{\nu}}_e$ appearance data indicates a sterile neutrino state with mixing parameter $\sin^2 2\theta_{\mu e} = 0.918$, and $\Delta m_{\rm new}^2 = 0.041 \, {\rm eV}^2$.

Search for light sterile neutrinos at Daya Bay

Daya Bay experiment

- Measures reactor $\bar{\nu}_e$ flux at multiple baselines (~300 m ~2000 m)
- Search for an oscillation frequency different from those in the three-flavor framework

Gaussian CL_s statistical method [2-3]

Two-hypothesis test H_1 : $(\sin^2 2\theta_{14} \neq 0, \Delta m_{41}^2 \neq 0)$, a specific

parameter space H_0 : (sin²2 $\theta_{14} = 0$), standard threeflavor mixing framework

point in the sterile neutrino mixing

$$\Delta \chi^2 = \chi_{H_1}^2 - \chi_{H_0}^2$$

Results

- No evidence of light sterile neutrino observed
- Limits obtained using Gaussian CL_s method
- Independent analyses by two groups yield consistent results
- Feldman-Cousins [4] contours consistent with CL_s contours
- World-leading limits on $\sin^2 2\theta_{14}$ in the $2 \times 10^{-4} \text{ eV}^2 \le \left| \Delta m_{41}^2 \right| \le 0.2 \text{ eV}^2 \text{ regions}$

Improvements

- x2 more data than previous analysis
- Relative detection efficiency uncertainty reduced from 0.2% to 0.13%
- New time-dependent spatial non-uniformity correction
- More precise background assessment

Daya Bay + Bugey-3 Combination

Bugey-3 experiment [5]

- 3 detectors at 2 positions
- Short baselines. (15 m, 40 m, 95 m)
- Probe higher $|\Delta m_{41}^2|$ than Daya Bay does

Data from Bugey-3 experiment are reanalyzed using the Gaussian CL_s method

Updated reactor neutrino model and neutron life time

Combine Daya Bay and Bugey-3 results to set the constraints for $\sin^2 2\theta_{14}$

Search for light sterile neutrinos at MINOS and MINOS+

MINOS and MINOS+

- Measures accelerator neutrino flux with a long baseline
- Two functionally identical ironscintillator sampling calorimeters
- Search for oscillation signature in both near and far detectors

Neutrino Energy (GeV) FD $P_{3\nu}(\nu_{\parallel}\rightarrow\nu_{\parallel})$ Events 0.0 10^{3} L/E (km/GeV) 10

- $+5.8 \times 10^{20}$ POT from MINOS+ runs
- New two-detector fit method (fit near and far spectra simultaneously)

Joint Analysis

In presence of a light sterile neutrino (3 active + 1 sterile)

Combination of two disappearance channels can constrain

The LSND and MinoBooNE appearance probability $\sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2 L}{4F}$, where $\sin^2 2\theta_{\mu e} \equiv \sin^2 2\theta_{14} \sin^2 \theta_{24}$

The CL_s contours from the MINOS, MINOS+, Daya Bay, and Bugey-3 experiments are combined

- $\Delta \chi^2$ surfaces from two disappearance channels are summed up
- Appearance allowed regions with $\Delta m_{41}^2 < 1.2 \text{ eV}^2$ are excluded at 99% C.L., including two sterile neutrino global fits [7-8]

Conclusions

most values of $\Delta m_{41}^2 > 10^{-4} \text{ eV}^2$ [6]

PRL accepted

- Daya Bay and MINOS+ collaborated to combine the measurements from $\bar{\nu}_e$ and $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance channels, using the CL_s statistical method
- Stringent limits are placed on $\sin^2 2\theta_{ue}$ over 7 orders of magnitude in Δm_{41}^2
- Tension between the $\bar{\nu}_e$ appearance indications and the null results from disappearance channels is increased

Reference [1] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett. 121, 221801 (2018).

[5] B. Achkar et al. (Bugey-3 Collaboration), Nucl. Phys. B 434, 503 (1995).

- [2] A. L. Read, J. Phys. G 28, 2693 (2002).
- [3] X. Qian, A. Tan, J. J. Ling, Y. Nakajima, and C. Zhang, Nucl. Instrum. Meth. A 827, 63 (2016). [4] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
- [6] P. Adamson et al. (MINOS+ Collaboration), Phys. Rev. Lett. 122, 091803 (2019). [7] S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, Phys. Lett. B 782, 13 (2018).
- [8] M. Dentler, A. Hernández-Cabezudo, J. Kopp, P. A. N. Machado, M. Maltoni, I. Martinez-Soler, and T. Schwetz,
- JHEP **08**, 010 (2018).