Constraining DM-neutrino interactions with IceCube-170922A

ÉĐấUYY ÊÜKIAS 과등과학원 KOREA INSTITUTE FOR ADVANCED STUDY

Phys. Rev. D **99**, 083018 (2019) [arXiv: 1903.03302] In collaboration with Prof. Ki-Young Choi, Prof. Carsten Rott

ICHEP 2020 (July 30) 40th International Conference on High Energy Physics

Contents

- o IceCube-170922A
- New constraint
- Known constraints
- Complex scalar DM model
- Conclusion

IceCube-170922A

 Fermi-LAT and MAGIC identify a spatially coincident flaring blazar (TXS 0506+056)

IceCube-170922A

IceCube 2018 Science

- Icecube-170922A
 - TXS 0506+056 determined to be z = 0.3365 S. Paiano et al, ApJL 2018
 - 1421 Mpc
 - Right ascension: 77.42, Declination: 5.72

Equatorial coordinate system

Mean free-path for a neutrino

- How far a neutrino can travel without any scattering process
- The definition of the mean free-path

•
$$\lambda_{\text{MFP}} = \frac{1}{n_X \sigma(\nu X \to Y)}$$

- X can be DM
- A new physics model can be constrained

Dissipation of neutrino flux

- The interaction of neutrinos with DM can suppress the flux of neutrinos along the path from the source to Earth
 - Scattering cross section → constant

$$\Phi = \Phi_0 e^{-\int_{\text{path}} \sigma n(\mathbf{x}) dl}$$

 The suppression depends on the DM-v scattering cross section as well as the DM number density along the path

$$\circ$$
 $\int \sigma n dl \lesssim 2.3$

Galactic coordinate

- Icecube-170922A
 - b = -19.6 degree
 - I = 15.4 degree
- Not travel through GC
 - Not depends on DM profile

Dissipation of neutrino flux

The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

- Suppression from the cosmological DM
 - Cosmological DM energy density is determined by Planck 2018 data

$$\rho_{\rm dm}(z) = 1.3 \times 10^{-6} (1+z)^3 \, {\rm GeV/cm^3}$$
 Planck 2018

$$\int_{los} \rho(z) dl = \int \rho(z) \frac{cdt}{dz} dz,$$

$$\simeq 7.2 \times 10^{21} \,\text{GeV/cm}^2.$$

Dissipation of neutrino flux

The suppression can be divide into two contributions

$$\int_{\text{path}} \sigma n(\mathbf{x}) dl = \int_{\text{los}} n(z) \sigma dl + \int_{\text{los}} \sigma n_{\text{gal}}(\mathbf{x}) dl,$$
$$= \frac{\sigma}{M_{\text{dm}}} \left(\int_{\text{los}} \rho(z) dl + \int_{\text{los}} \rho_{\text{gal}}(\mathbf{x}) dl \right)$$

- Galactic DM
 - NFW DM profile ←
 - $\int_{los} \rho_{\rm gal}(\mathbf{x}) dl \simeq 3.8 \times 10^{22} \,\mathrm{GeV/cm^2}$

$$\rho_{\text{gal}}(\mathbf{x}) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2}$$

- Incidentally both contributions from cosmological DM and Milky Way DM are very comparable
 - Very tiny cosmological DM density is compensated by the long distance

New constraint

- Demand less than 90% suppression of the flux
 - $\int \sigma n dl \lesssim 2.3$
- DM-v scattering cross section
 - The identification of the source can allow the precise evaluation of the neutrino flux change due to DM- v scattering cross section

•
$$\sigma/M_{\rm dm} \le 5.1 \times 10^{-23} {\rm cm}^2/{\rm GeV}$$

• @
$$E_{\nu} = 290 \text{ TeV}$$

Known constraints

Lyman-alpha

C. Boehm, R. Wilkinson arXiv: 1401.7597

- WIMP DM stays in equilibrium with primordial plasma for longer time due to elastic scattering and undergoes acoustic oscillations
- Suppresses matter perturbations and reduces the amount of small scale structures today
- constant cross section: $\sigma_{\rm el} < 10^{-36} \; \left(\frac{m_{\rm DM}}{{\rm MeV}} \right) \; {\rm cm}^2$
- T-dependent cross section: $\sigma_{
 m el} < 10^{-48} \; \left(rac{m_{
 m DM}}{
 m MeV}
 ight) \; \left(rac{T_{
 u}}{T_0}
 ight)^2 \; {
 m cm}^2$ $T_0 = 2.35 imes 10^{-4} \; {
 m eV}$
- This constraint can be applied for neutrino energy at around 100 eV.

Known constraints

G. Barbiellini, G. Cocconi, 1987

- o SN1987A
 - Neutrino energies ~ 10 MeV
 - Distance ~ 50 kpc
- v-DM interaction can be constrained
- This constraint can be applied for neutrino energy at around 10 MeV.

Neutrino energy	$\sigma/M_{\rm dm} [{ m cm}^2/{ m GeV}]$
$\sim 100 \text{ eV}$	6×10^{-31}
$\sim 100 \text{ eV}$	10^{-33}
10 MeV	10^{-22}

Scattering cross section

•
$$\sigma_0/M_{\rm dm} \lesssim 10^{-33} \, {\rm cm}^2/\, {\rm GeV}$$
 for $n=0$,
 $\sigma_0/M_{\rm dm} \lesssim 6.3 \times 10^{-34} \, {\rm cm}^2/\, {\rm GeV}$ for $n=2$,
 $\sigma_0/M_{\rm dm} \lesssim 7.5 \times 10^{-45} \, {\rm cm}^2/\, {\rm GeV}$ for $n=4$.

 Stringent constraint depends on the upper bound on DM-neutrino scattering cross section

Complex scalar DM model

- A fermion mediator
 - $\mathcal{L}_{\text{int}} = -g\chi \overline{N}\nu_L + \text{h.c.},$
- Scattering cross section vs neutrino energy

Conclusion

- Identifying sources of astrophysical neutrinos gives us additional information
- We find new constraint on DM-v scattering
 - Obtained from Icecube-170922A

- • $E_{\nu} = 290 \text{ TeV}$
- Certain classes of new physics models can be probed by high energy neutrinos travelling very long distances
 - Light DM model

Conclusion

 Identifying sources of astrophysical neutrinos gives us additional information

Thank you.

- • $E_{\nu} = 290 \text{ TeV}$
- Certain classes of new physics models can be probed by high energy neutrinos travelling very long distances
 - Light DM model