Studies of Quantum Mechanical Coherency Effects in Neutrino-Nucleus Elastic Scattering

Vivek Sharma

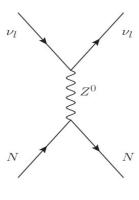
On behalf of TEXONO Collaboration
Institute of Physics, Academia Sinica, Taiwan

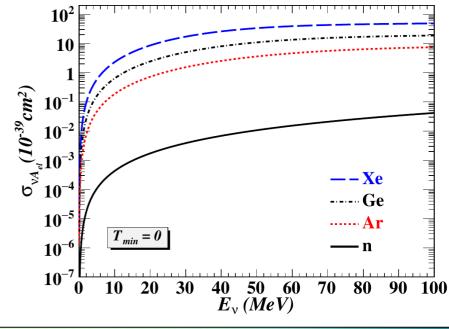
Outline

- Introduction and Motivation.
- Global Status of vA_{et}.
- TEXONO Facilities.
- vA_{el} at KSNL.
- Sensitivity of Experiment.
- Coherency in vA_{el} scattering
- Summary.

Neutrino-Nucleus Elastic Scattering

A neutrino interacts with a nucleus of neutron number "N" via exchange of Z - Boson.

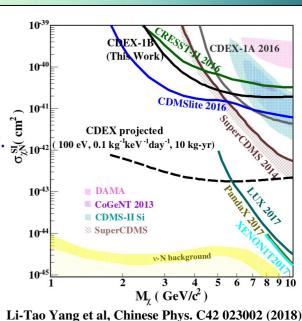

$$V + N \rightarrow V + N$$


Cross-Section of VA_{el} :

$$\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] [\varepsilon Z - N]^2 F(q^2)$$

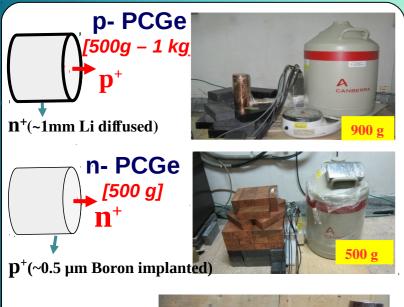
Where G_F is fermi constant, E_v is incident neutrino energy, Z(N) is Atomic(Neutron) number of nuclei and q is three momentum transfer.

 $\varepsilon = 1 - 4\sin^2\Theta_w = 0.045$, gives \mathbb{N}^2 dependence

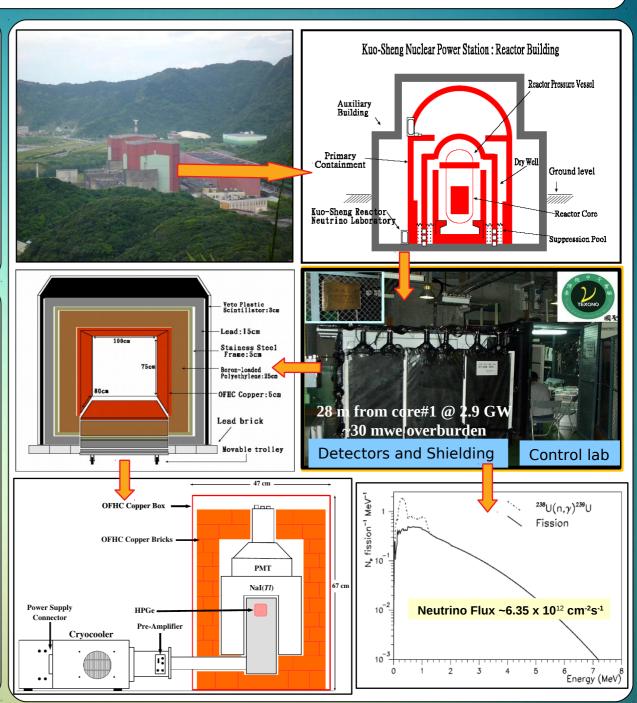


Requirements:

- *High Neutrino Flux.*
- Lower Threshold.
- Better Resolution.
- Quenching Factor.
- Background Understanding.
- Better Shielding from Gamma, Neutrons etc..
- Sufficient Source On/Off Statistics.

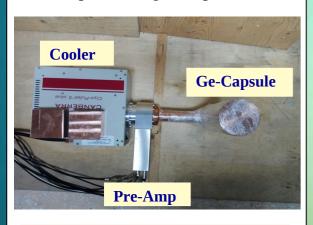

Importance:

- Important role in Supernova Explosions.
- Test of fundamental SM-electroweak interaction.
- In study of Beyond Standard Model Physics.
- Probe transition of Quantum Mechanical Coherency in electro-weak process.
- Potential use in Reactor monitoring as a portable device.
- ✓ vA_{el} Scattering is important to study the irreducible background for Dark Matter Search.

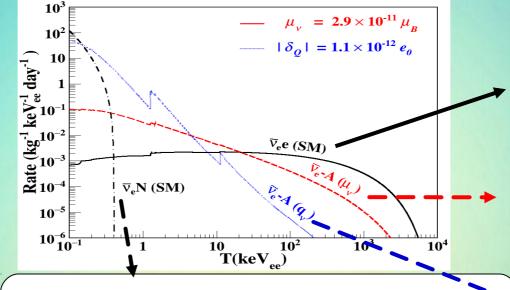

TEXONO Collaboration

- TEXONO (Taiwan EXperiment On NeutrinO)
 Experiment is located at Kuo-Sheng Nuclear
 Power Plant -II on northern shore of Taiwan.
- **Theme:** Low Energy Neutrino Physics and Dark Matter Searches.
- Collaboration with Turkey, China and India.
- The reactor power of 2.9 GW gives 6.35×10¹² cm⁻² s⁻¹ electron anti-neutrinos at a distance of 28 m.
- Collaboration with CDEX Underground Dark-Matter Experiment, China.

Electro-cooled Germanium Detector



Detector Generation and Neutrino Physics at KSNL


Quali	ty Detector R	Requirements 9	Mass
Generation	Mass (g)	Pulsar FWHM (eV _{ee})	$\begin{array}{c} \textbf{Threshold} \\ (eV_{ee}) \end{array}$
G 1	500	130	500
G2	900	100	300
G3	500	70	200
G3+	1430	Soon	Soon

Advantages of G3(+) Electrocooled HPGe Detectors:

- > Controlled micro-phonic noise.
- Customized achievable temperature.
- > Improved near contact electronics.
- ► No liquid Nitrogen required.

Electrically Refrigerated HPGe Detector

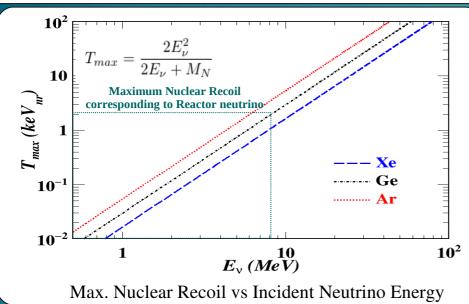
v-e Scattering SM
[PRD10] & NSI/BSM
[PRD10,PRD12,PRD15,PRD17]

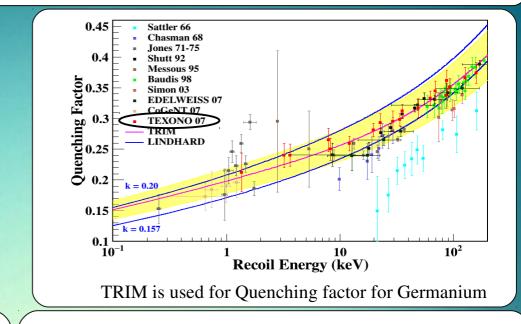
⇒ 200 kg CsI(TI)

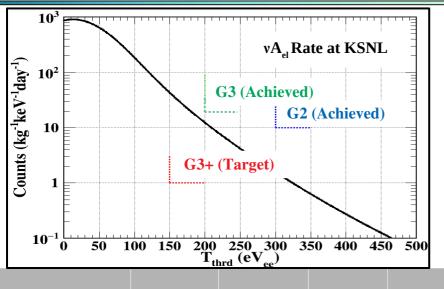
Magnetic Moments

[PRL03,PRD05,PRD07]

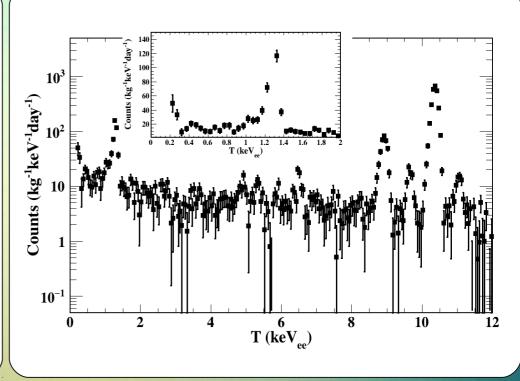
⇒ 1 kg HPGe


vN Coherent Scattering [Current Theme; PRD16]


- ⇒ sub-keV O(kg) ULEGe / PCGe
 - Dark Matter Searches @ KSNL [PRD09,PRL13,AP14]
 - CDEX Program@CJPL [PRD13,PRD14,PRD14;PRD16,PRD17]
 - Theory Program


Neutrino Milli-charge [PRD14]

⇒ sub-keV O(kg)
ULEGe / PCGe


vA_{el} at KSNL with Reactor Neutrino..

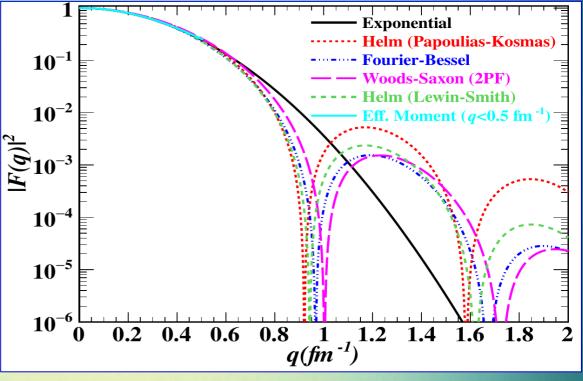
Threshold	300 eV	200 eV	150 eV	100 eV
Differential (Cpkkd)	0.8	8.3	27.3	109.5
Integral (Cpkd)	0.04	0.47	1.6	6.4

Coherency in vA_{el} Scattering

Form-Factor:

- Gives an idea about coherency within the nucleons.
- Used for study of Nuclear Structure.
- Complete Coherence at low

Energy.


VA_{el} measures the neutron distribution

Form-Factor is fourier transformation of Charge distribution in the nucleus:

$$F(q) = \frac{1}{A} \int \rho(r) e^{-i\mathbf{q}\cdot\mathbf{r}} d^3r$$

Helm Model Form-Factor:

$$F(q) = \frac{3j_1(qR)}{qR}e^{-(qs)^2/2} = 3\frac{\sin(qR) - qR\cos(qR)}{(qR)^3}e^{-(qs)^2/2}$$

Coherency in vA_{el} Scattering

- The finite phase of net combined amplitude vector can define degree of coherency.
- Combined amplitude can be defined as:

$$\mathcal{A} = \sum_{j=1}^Z e^{i\theta_j} \mathcal{X}_j + \sum_{k=1}^N e^{i\theta_k} \mathcal{Y}_k$$
 where $(\mathcal{Y}_n, \mathcal{X}_m) = (1, -\varepsilon)$

- The cross-section comprise $(N + Z)^2$ terms.
- In total cross-secti $\sigma_{\nu A_{el}}(Z,N) \propto \mathcal{A} \mathcal{A}^{\dagger}$, average phase mis-alignment angle follows:

$$e^{i(\theta_j - \theta_k)} - e^{-i(\theta_j - \theta_k)} = 2\cos(\theta_j - \theta_k) = 2\cos(\phi)$$

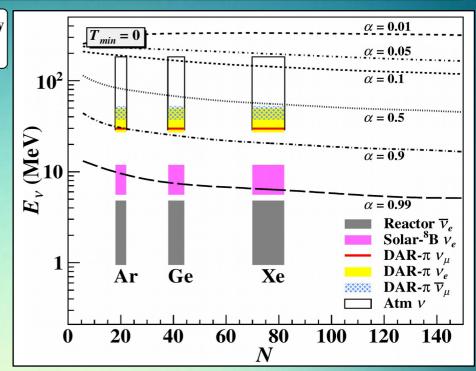
Degree of coherency described as:

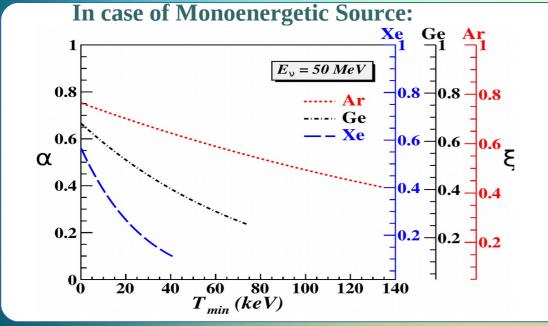
$$\alpha \equiv \cos\langle\phi\rangle \in [0,1]$$

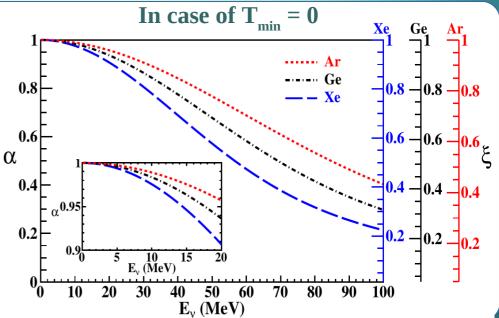
$$\frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,N)} = Z\varepsilon^{2}[1+\alpha(Z-1)]+N[1+\alpha(N-1)]-2\alpha\varepsilon ZN$$

$$\sigma_{\nu A_{el}}(\alpha) = \frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} \propto \begin{cases} [\varepsilon^{2}Z+N], & \alpha=0 \text{ (incoherent)} \\ [\varepsilon Z-N]^{2}, & \alpha=1 \text{ (coherent)} \end{cases}$$

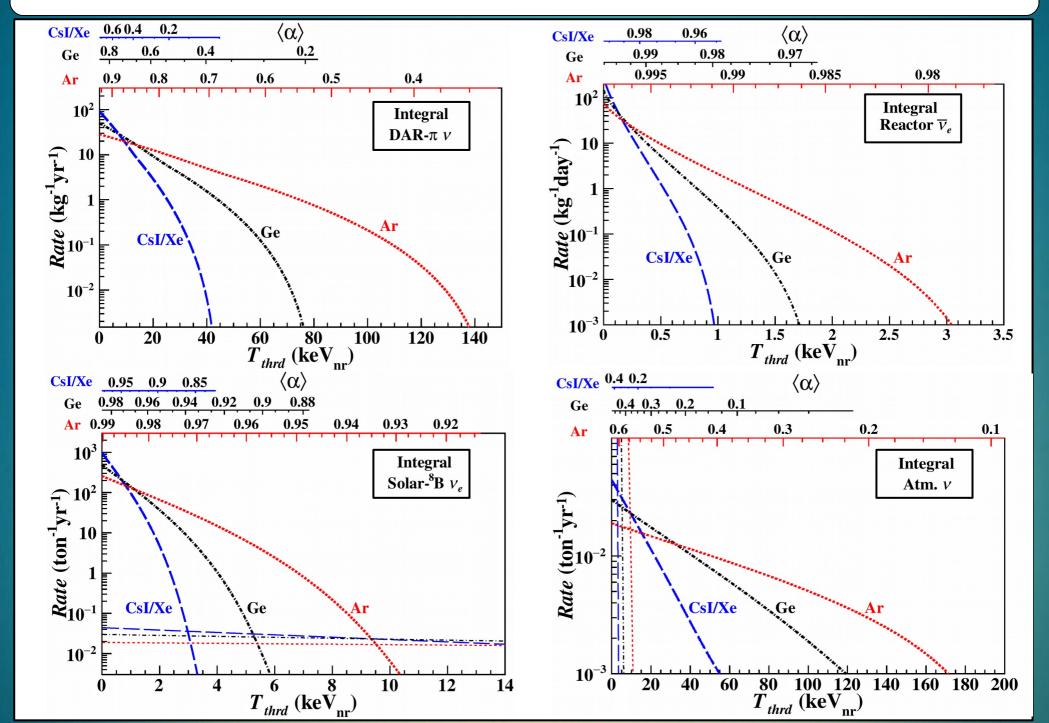
Degree of Coherency and Relative Cross-section

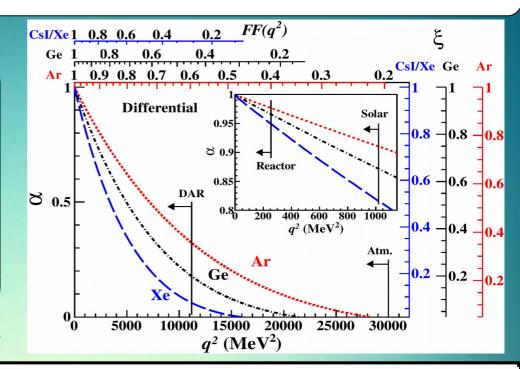

Reactor and solar neutrino probe vA_{el} in region with higher degree of coherency

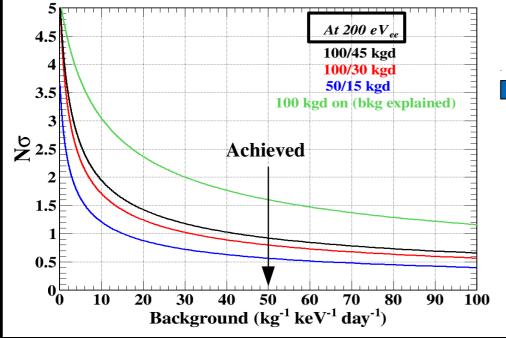

Lower mass nuclei are better choice for higher degree of coherency

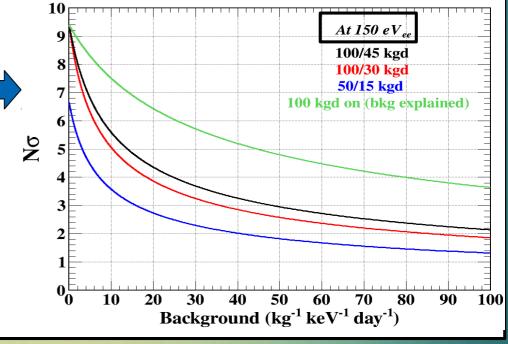

$\overline{\nu}$	Half-Maxima of $\sigma_{\nu A_{el}} \Phi_{\nu}$	$\langle \alpha \rangle$ with		
Source	${ m in} { m E}_{ u}({ m MeV})$	Ar	Ge	Xe
Reactor $\bar{\nu}_e$	0.96 - 4.82	1.00	1.00	1.00
Solar $^8 \text{B-} \nu_e$	5.6 - 11.9	0.99	0.99	0.98
DAR- $\pi \ u_{\mu}$	29.8	0.91	0.86	0.80
DAR- $\pi \nu_e$	27.3 - 49.8	0.89	0.83	0.76
DAR- $\pi \bar{\nu}_{\mu}$	37.5 - 52.6	0.85	0.79	0.71

The relative change in cross-section can be given as:


$$\xi = \frac{\sigma_{\nu A_{el}}(\alpha)}{\sigma_{\nu A_{el}}(\alpha = 1)}$$


Integral Rate and Degree of Coherency for different Sources




Status of vA_{el} Scattering @KSNL

$$\nu + A(Z,N) \rightarrow \nu + A(Z,N)$$

$$\begin{split} \frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) &= \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] \\ &\times \left[\varepsilon Z F_Z(q^2) - N F_N(q^2) \right]^2 \end{split}$$

Summary

- Study of vA_{el} interaction has importance in order to study the electroweak interaction in SM, Astrophysics and Irreducible background in Dark Matter searches.
- Studies for vA_{el} from different neutrino sources probe transitions of QM Coherency in Electroweak process.
- Probe to BSM using vA_{el} interaction with low energy neutrinos is less vulnerable to uncertainties in Coherency and Form-Factor.
- Ultra low energy threshold 200 eV is achieved and 150 eV is expected from future detector.
- Roadmap is ready to probe Reactor and Solar vA_{el} in near future.

Thank You