

The University of Manchester

Direct comparison of sterile neutrino constraints from cosmological data and oscillation data in a 3+1 model

Matthew Adams, Fedor Bezrukov, Jack Elvin-Poole, **Justin Evans**, Pawel Guzowski, Brían Ó Fearraigh, Stefan Söldner-Rembold

Sterile neutrino tensions

 $v_{\mu} \rightarrow v_{e}$ appearance seen by LSND and MiniBooNE consistent with a sterile neutrino

MINOS, Daya Bay and Bugey exclude most of the allowed parameter space with v_{μ} and v_{e} disappearance

Cosmology and sterile neutrinos

Thermalised sterile neutrinos add an extra relativistic degree of freedom observable in the CMB power spectrum

$$m_{ ext{eff}}^{ ext{sterile}} = \left(rac{T_s}{T_
u}
ight)^3 m_4^{ ext{thermal}} = (\Delta N_{ ext{eff}})^{3/4} m_4^{ ext{thermal}}$$

Relating particle physics to cosmology

Graph from S. Hannestad *et al.*, Cosmol Astropart. Phys. **2012**, 025 (2012), arXiv:1204.5861 Code available as LASAGNE

Larger sterile mass splitting increases temperature of thermalization \Rightarrow greater ΔN_{eff}

Larger mixing angle allows a higher thermalisation rate \Rightarrow greater ΔN_{eff}

Gallium anomaly allowed region and Daya Bay exclusion region expressed in cosmological parameter space

Compared to Planck exclusion

Can also convert the Planck exclusion into neutrino-oscillation parameter space

Can also convert the Planck exclusion into neutrino-oscillation parameter space

Including here the Neutrino-4 and gallium anomaly allowed regions

A 3+1 model for $v_e \rightarrow v_\mu$ appearance

$$\sin^2(2\theta_{\mu e}) \equiv \sin^2(2\theta_{14})\sin^2(\theta_{24})$$

Requirement to solve quantum kinetic equations in four flavours requires simplification: mean momentum approximation

Degenerate region where $\Delta m^2_{41} \sim \Delta m^2_{31}$

Validating the mean momentum approximation

3+1 model for $v_{\mu} \rightarrow v_{e}$ analysis

Cosmological parameters in the oscillation space of $v_{\mu} \rightarrow v_{e}$

The University of Manchester

3+1 model for $v_{\mu} \rightarrow v_{e}$ analysis

Daya Bay/Bugey/MINOS combination from PRL **117** 151801 (2016)

Conclusion

Cosmological and particle physics searches for sterile neutrinos can be compared in the same parameter space

v_e disappearance

- ightharpoonup Cosmological limits are strongest above $\Delta m^2_{41} \sim 0.1~eV^2$ and $m_{eff}^{sterile} \sim 0.2~eV$ but are model-dependent
- > Daya Bay is more constraining at lower masses

$v_{\mu} \rightarrow v_{e}$ appearance

- > Cosmological limits are strongest at mass splittings above $\Delta m^2_{41} \sim 5 \times 10^{-2}$ eV² and $m_{eff}^{sterile} \sim 0.2$ eV but are model-dependent
- Daya Bay / Bugey / MINOS combination is more constraining at lower masses