

1/30

Status of the Veto System of JUNO (extra info)

João Pedro Athayde Marcondes de André for the JUNO Collaboration

IPHC/IN2P3/CNRS

July 30th, 2020

J. P. A. M. de André for JUNO July 30th. 2020 July 30th. 2020

- General info on JUNO
 - JUNO detector
 - IBD
 - Backgrounds
- JUNO Water Cherenkov Detector
 - Pure water system
 - Water Pool Liner
 - Tyvek
 - EMF compensating coils
 - PMT
- JUNO Top Tracker
 - Mechanical Structure
 - Electronics
 - Prototype
 - Reconstruction quality

General info on JUNO

Introduction to the Jiangmen Underground Neutrino Observatory

J. Phys. G 43 (2016) no.3, 030401

- JUNO located 53 km from Taishan and Yangjiang NPP
 - TAO@JUNO planned in Taishan NPP
- Baseline optimized for Neutrino Mass Ordering determination
 - many other topics in reach

4/30

• First experiment to see both Δm^2 from ν oscillations

Introduction to the Jiangmen Underground Neutrino Observatory

- J. Phys. G 43 (2016) no.3, 030401
 - JUNO located 53 km from Taishan and Yangjiang NPP
 - TAO@JUNO planned in Taishan NPP
 - Baseline optimized for Neutrino Mass Ordering determination
 - many other topics in reach

4/30

• First experiment to see both Δm^2 from ν oscillations

The JUNO Detector

Top Tracker (TT)

- Precise μ tracker
- 3 layers of plastic scintillator
- ullet \sim 60% of area above WCD

Water Cherenkov Detector (WCD)

- 35 kton ultra-pure water
- 2.4k 20" PMTs
- ullet High μ detection efficiency
- Protects CD from external radioactivity
- \rightarrow Central Detector (CD) $\bar{\nu}$ target
 - Acrylic sphere with 20 kton liquid scint.

- 18k 20" PMTs + 26k 3" PMTs
- 3% energy resolution @ 1 MeV

Measuring Reactor $\bar{\nu}_e$

- $\bar{\nu}_e$ detected via IBD: $\bar{\nu}_e + p \rightarrow n + e^+$
 - ▶ IBD used since discovery of $\bar{\nu}$
 - ► Prompt+delayed signal ⇒ large background suppression
 - Expected event rate: 73/day (IBD-like in FV)

Measuring Reactor $\bar{\nu}_e$: μ -Induced Backgrounds

Measuring Reactor $\bar{\nu}_e$: μ -Induced Backgrounds

71/day (IBD-like in FV)

JUNO μ Veto

- Goal: remove cosmogenic-induced IBD-like events
- Veto criteria:
 - lacktriangledown if μ tagged and direction known, reject events within 3 m of μ for 1.2 s
 - **3** if μ tagged in CD (WCD) but direction unknown, reject events for 1.2 s (1.5 ms)
- \Rightarrow Need to track μ well to avoid full detector veto!
 - ▶ 99% of μ expected to be in category **①**
 - ▶ If cannot reco. μ (ie, 100% in category ②) \Rightarrow 100% detector downtime
 - ullet Tracking μ going to rock also important to experimentaly evaluate fast n rate

Selection	IBD efficiency	IBD	$\mathrm{Geo}\text{-}\nu\mathrm{s}$	Accidental	$^9 \text{Li} / ^8 \text{He}$	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%			1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60	3.8				

Table 2-1: The efficiencies of antineutrino selection cuts, signal and backgrounds rates.

JUNO Water Cherenkov Detector

Water Cherenkov Detector overview

Pure water system

- Water circulation keeps water quality
- \bullet Keep acrylic sphere at (21 \pm 1) $^{\circ}C$
- Prevent Rn diffusion to CD
- Company for installation already selected (Shenzhen Ultrapure)
- Will starting installing pipes still this year
- 100 t/h system ready in 2021

Pure water system: flowchart

Figure 6: The flow chart of JUNO pure water system

Water Pool Liner

Figure 2: HDPE liner. Left: the StudLiner. Middle: the pool. Right: the smooth liner.

- High Density PolyEthylene plate (HDPE) used to separate rock and ultra pure water
 - Keep water clean
 - ► Prevent Rn diffusion from rock
- Finishing to test installation procedure

Figure 4: Left: reflectivity of different Tyveks . Right: effect drawing of Tyvek.

- ullet Cover all surfaces to water pool with tyvek o increase light collection
- Use same as for Daya-Bay
- Preparing for bidding

EMF compensating coils

- ullet @ JUNO site geomagnetic field is B pprox 45 μT
- 16 pairs shielding coils
- ullet EMF coils set to compensate geomagnetic field ightarrow residual $B < 5~\mu T$
- Ready for production

WCD PMTs

- Same 20" PMTs as in CD, placed around acrylic sphere
- 2400 PMTs divided with 44% on top, and 56% on bottom

JUNO Top Tracker

JUNO Top Tracker (TT): Overview

- TT refurbished from OPERA Target Tracker
 - ► 62 walls measuring (6.7 × 6.7) m² of plastic scintillator available
 - ▶ Walls distributed in 3×7 horizontal grid in 3 layers \rightarrow cover $\sim 60\%$ of surface above WCD
 - Monitoring of aging of detector essential
 - ▶ Upgrades needed on several systems: electronics, mechanical structure, . . .
- Very precise μ tracking
 - ► Detector granularity 2.6 × 2.6 cm² in X–Y
 - ▶ 3 Layers separated by 1.5 m
 - \Rightarrow 0.2° median resolution for μ tracks!

TT Modules Already Delivered at Detector Site!

TT Monitoring in PMT Testing Hall

- ullet Use old electronics to take atm. μ data from TT modules in containers during storage
- No significant aging observed up to now

TT Monitoring in PMT Testing Hall

TT Mechanical Structure

- TT modules are flexible
- In OPERA modules placed vertically

 → no supporting structure needed
- In JUNO, horizontal placement requires strong structure to avoid sagging

- Easy access to electronics needed
- Final design review completed
 - TT wall supporting structure

- TT chimney structure
- TT bridge
- Ready to start mass production

TT Mechanical Structure

TT Electronics: Schematic View

Front-End Board (FEB): PMT interface and part of the PMT readout.

Read-Out Board (ROB): slow control, power supply, and finish PMT readout.

- Charge readout by FEB/ROB takes 8-15 μ s
- Permanent Fast OR Trigger

Concentrator Board: gathers hits related to each wall, and create L1 trigger. Also time-stamps of all hits with a nanosecond precision.

Coincidence Board: combine information from all L1 triggers to produce a L2 trigger.

TT Electronics: Front End Board and Read Out Board FEB ROB

- Design validated by collaboration
- 1200 cards produced and tested
 - 1st pass of testing ended on July 2020
 - ▶ 97% passed tests
 - Cards that did not pass being repaired

- Test of integration with FEB and Concentrator on-going
- To be reviewed by collaboration in 2020
- Production should start just after passing review

TT Electronics: Concentrator and L2 Trigger Boards

- Concentrator Board is divided on a motherboard + SOM card
 - both cards developed @IPHC
 - ► SOM → Xilinx Ultrascale+ FPGA
 - ★ 16 layers, >600 FPGA pins routed, DDR4 2x8Gb @ 1GHz
- Extensively tested V2 prototype
- Have just received V3 prototype
 - This should be final version
 - Finish testing by end 2020
 - Production of 80 CB expected in 2021
- Just started design of L2 Trigger Board based on Concentrator Board
- Only 1 TT L2 trigger card needed for JUNO, will be ready for data taking

CBv3 (2020)

FPGA – IPHC SOMv2

TT Trigger Overview

- Natural radioactivity @JUNO site is 100× larger than @OPERA site
- Need to quickly reject radiation (but not μ!) to reduce dead time

- L1 trigger: acts at "wall" level, looks for X–Y coincidences
- L2 trigger: looks at the whole detector (looks for global alignment)

TT Prototype

- TT prototype in Strasbourg
 - build with a quarter of a TT wall
 - ▶ 4 X Y layers (instead of 3 as in TT@JUNO)
- Perfectly adapted to test new TT Electronics Cards
 - FEB & ROB tested in with close to real conditions
 - ► Testing of some L1 & L2 trigger algorithms in small scale also possible

TT Prototype: data

- Put in place full calibration procedure
- XY coincidence in 1 plane: ~500 Hz
 → 1 evt/min/cm²
- Reconstructed coincident events using JUNO software
- On-going work to tune simulation & improve reconstruction

TT reconstruction quality

- Median resolution: 20 cm at bottom of WP or 0.2° angular resolution
- 95% of events within: 50 cm at bottom of WP or 0.5° angular resolution