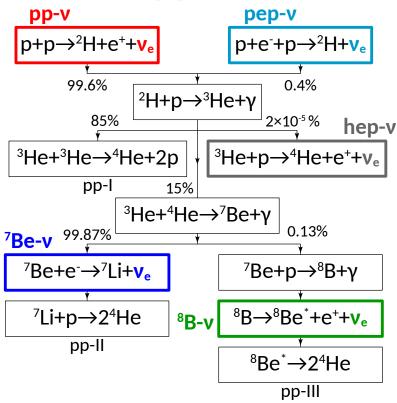
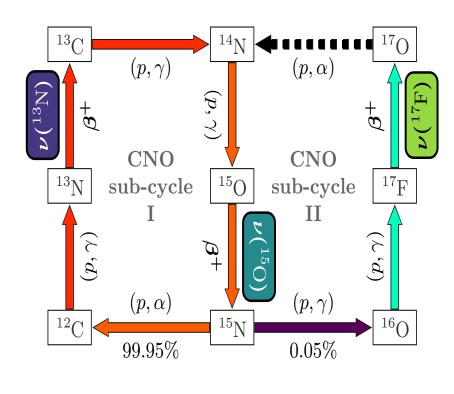

BOREXINO detector

- + 280 tons of liquid scintillator
- + 2212 8-inch PMTs
- + Active Cherenkov muon veto
- Average number of active channels for this data set:
 1238
- + Δ E/E ~ 6% and $\sigma_{x,y,z}$ ~11cm at 1 MeV

Start data taking: May 2007



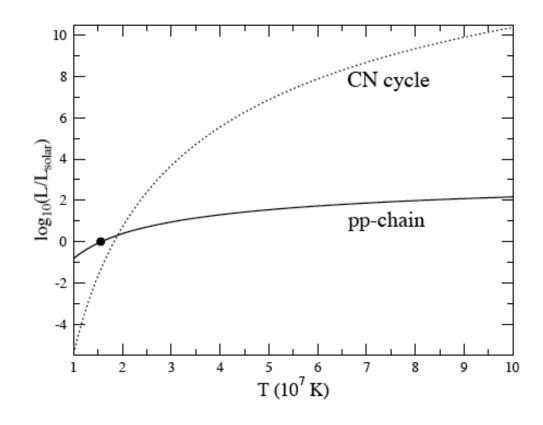
Borexino operations and achievements



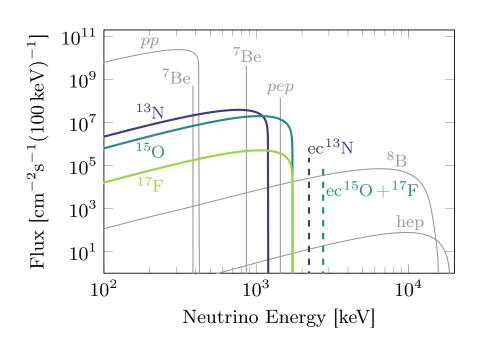
Solar neutrinos

pp chain

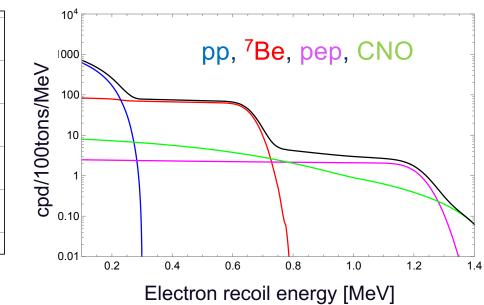
CNO cycle



Solar neutrinos and energy production

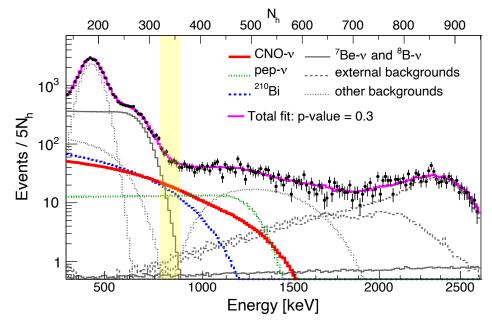

+ Energy conservation

$$\frac{L_{\odot}}{4\pi(A.U.)^2} = \sum_{i} a_i \phi_i^{\nu}$$


 L_{\odot} =3.846±0.015 erg/s

Solar neutrino energy spectrum

Neutrino-electron elastic scattering expected spectrum in Borexino

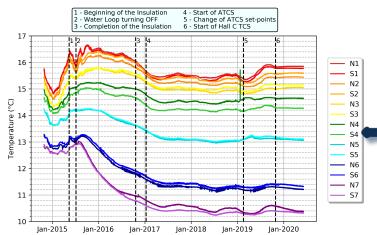


Borexino achievements on solar neutrinos

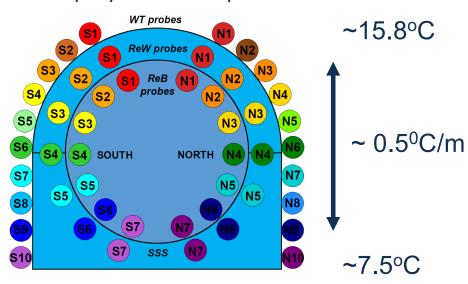
v source	SSM-HZ/SSM-LZ [cm ⁻² s ⁻¹]	Borexino rate [cpd/100tons]	Borexino flux [cm ⁻² s ⁻¹]
рр	5.98(1±0.006)x10 ¹⁰ 6.03(1±0.006)x10 ¹⁰	134+12 ₋₁₄	6.1(1±0.10)x10 ¹⁰
pep	1.44(1±0.01)x10 ⁸ 1.46(1±0.01)x10 ⁸	$2.43^{+0.39}_{-0.42}$ $2.65^{+0.39}_{-0.43}$	1.27(1±0.17)x10 ⁸ 1.39(1±0.16)x10 ⁸
⁷ Be	4.93(1±0.06)x10 ⁹ 4.50(1±0.06)x10 ⁹	48.3+1.2 _{-1.3}	5.0(1±0.027)x10 ⁹
8B	5.46(1±0.12)x10 ⁶ 4.50(1±0.12)x10 ⁶	0.223+0.016-0.017	5.68(1±0.076)x10 ⁸
hep	7.98(1±0.30)x10 ³ 8.25(1±0.30)x10 ³	<0.002 (90% C.L.)	<2.2x10 ⁵
CNO	4.88(1±0.16)x10 ⁸ 3.51(1±0.14)x10 ⁸	?	?

Challenge for CNO solar neutrino observation in Borexino

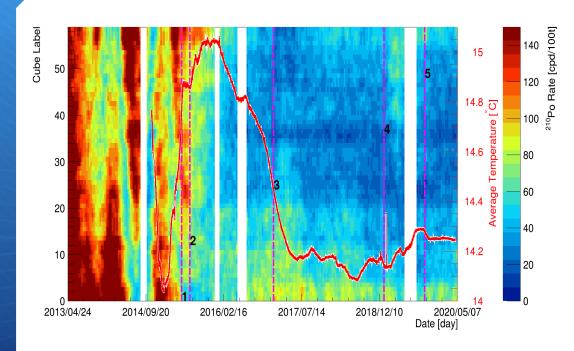
- Expected signal rate: 3 5 cpd/100ton
- Main background: ²¹⁰Bi ²¹⁰Pb $\xrightarrow{\beta^-}$ ²¹⁰Bi $\xrightarrow{\beta^-}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb
- Strong correlation between CNO, pep, and ²¹⁰Bi
- Expected S/B ~ 0.2 0.3


Strategy to observe CNO solar neutrinos in Borexino

- + Mitigate correlation with ²¹⁰Bi by reducing covenction currents which might take ²¹⁰Bi and ²¹⁰Po from nylon vessel into the fiducial volume
 - Thermal insulation and active temperature control system to establish a constant in time temperature gradient ($\Delta T/\Delta z \sim 0.5^{\circ}C/m$)
- + Exploit PSD discrimination to determine ²¹⁰Po in inner volume
 - ²¹⁰Po consists of an intrinsic component in equilibrium with ²¹⁰Bi and in an «external» component carried by convective currents
 - Estimated migration length obtained from ²¹⁰Po radial distribution is of the order of 1m


Thermal insulation and temperature control

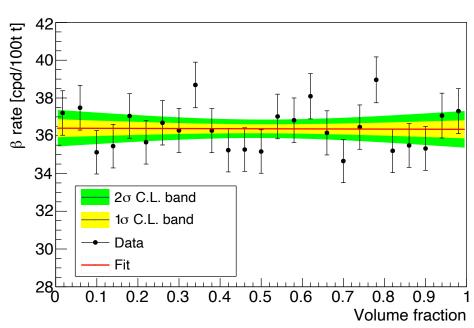
Borexino Water Tank with insulation



Deployment of T probes

Temperature as a function of time in different volumes of the detector

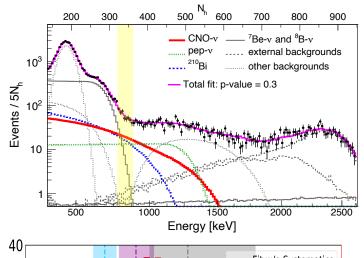
²¹⁰Po background in Borexino

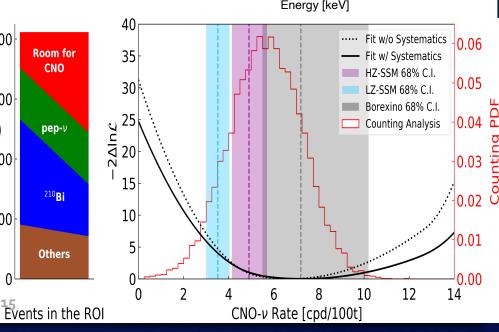

$$R(^{210}Po_{min}) = R(^{210}Bi) + R(^{210}Po^{Vessel})$$

- ²¹⁰Po rate in Borexino in cpd/100tons from bottom to top
- 3 tons cubes within 3m sphere
- 1. Beginning of thermal insulation
- 2. Water re-circulation loop in Water Tank off
- 3. Active temperature control system on
- 4. Change set point in the active control system
- 5. Air temperature control system in underground Hall

²¹⁰Bi constraint

- 210Bi uniformity and time stability
 - ²¹⁰Bi from liquid scintillator must be uniform in FV and stable in time
- > Select β-like events in specific energy window
 - study radial and angular distribution
 - study time stability


R(²¹⁰Bi) ≤11.5±1.3 cpd/100ton



CNO analysis and result

- Energy window: 0.32-2.64 MeV
- Fit energy spectrum and radial distribution
- Free pars: CNO, 85Kr, 11C, 40K, 208Tl, 214Bi, 7Be
- pep constrained to 2.74±0.04 cpd/100ton
- 210 Bi constrained ≤ 11.5±1.3 cpd/100ton
- Data set July 2016 Feb 2020
- 1072 days of livetime
- Selection cuts:
 - Muon and muon daughters
 - FV (R < 2.8 m && -1.8m<z<2.2m)
 - TFC

 $R(CNO) = 7.2^{+2.9}_{-1.7} \text{ cpd/}100\text{ton}$ Null hypothesis (CNO=0) rejected at 5.1σ

Room for

CNO

Others

Borexino achievements on solar neutrinos

v source	SSM-HZ/SSM-LZ [cm ⁻² s ⁻¹]	Borexino rate [cpd/100tons]	Borexino flux [cm ⁻² s ⁻¹]
рр	5.98(1±0.006)x10 ¹⁰ 6.03(1±0.006)x10 ¹⁰	134 ⁺¹² ₋₁₄	6.1(1±0.10)x10 ¹⁰
рер	1.44(1±0.01)x10 ⁸ 1.46(1±0.01)x10 ⁸	$2.43^{+0.39}_{-0.42}$ $2.65^{+0.39}_{-0.43}$	1.27(1±0.17)x10 ⁸ 1.39(1±0.16)x10 ⁸
⁷ Be	4.93(1±0.06)x10 ⁹ 4.50(1±0.06)x10 ⁹	48.3+1.2 _{-1.3}	5.0(1±0.027)x10 ⁹
8B	5.46(1±0.12)x10 ⁶ 4.50(1±0.12)x10 ⁶	0.223+0.016-0.017	5.68(1±0.076)x10 ⁸
hep	7.98(1±0.30)x10 ³ 8.25(1±0.30)x10 ³	<0.002 (90% C.L.)	<2.2x10 ⁵
CNO	4.88(1±0.16)x10 ⁸ 3.51(1±0.14)x10 ⁸	7.2 ^{+2.9} _{-1.7}	7.0 ^{+3.0} _{-2.0} x10 ⁸

Conclusions

- + Borexino 12 years of data taking
- + Full spectroscopy of solar neutrinos from pp-chain
 - pp at 10%; ⁷Be at 2.7%; pep observed at 5σ; ⁸B at 8% above 3MeV
- + Detection of geo-neutrinos at > 5σ with 98% evidence of signal from the Mantle
- + Annual modulation of muons and ⁷Be rates
- + No evidence for Day-night asymmetry for ⁷Be neutrinos
- + Rare events (some strong bounds)
- + Observation of CNO neutrinos (this talk!)

17 Aldo Ianni