

Office of Science

New high statistics results from the MINERvA experiment Medium Energy run

Heidi Schellman for the MINERvA Collaboration

Big question

Why is almost everything matter instead of anti-matter?

Answer may be CP-violating processes

Make particle/anti-particle and compare behavior

Quarks → B, K decays

Neutrinos → oscillations

Neutrino CP violation

Neutrinos oscillate between flavors!

Do neutrinos and antineutrinos behave the same?

Not necessarily! Study the rates for

$$u_{\mu} \rightarrow \nu_{e}$$

$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$

as a function of $E_{
m v}$

Start with a muon neutrino beam, Look for electron neutrinos 1300 km away

probability of finding each type of neutrino

- What are the interaction rates for each type?
- What is the neutrino energy for each event?
- Two ways to estimate the energy:
 - 1. Sum up all of the final state energy
 - 2. Use quasi-elastic scattering kinematics for a subset of events.
- Method 2 is especially important for anti-neutrinos as even simple processes like

$$\overline{\nu} + p \rightarrow \ell^+ + n$$

have hard-to-reconstruct final states that don't work with method 1.

Quasi-elastic scattering on nucleons (CCQE)

In principle 2-body scatter from a nucleon at rest allows full reconstruction of the kinematics from the muon alone.

Complications

Nuclei are complex Fermi motion .. Screening ... No longer a scatter at rest! Electron-scattering experiments have found that, approximately 20% of the time, electrons scattered from correlated pairs of nucleons instead of single nucleons.

R. Subedi et al. Science, 320(5882):1476–1478, 2008

~90% of these pairs consist of a proton and a neutron.

Initial interaction is not CCQE
But the observed event looks like it

Misidentification

Initial interaction is CCQE but the observed event is not!

QE-like: define a signal that is corresponds to to final state outside the nucleus.

CCQE-LIKE NEUTRINO

- One charged muon
- Any number of protons
- No pions
- Low additional recoil activity
- We allow any number of protons to include 2p2h contributions

Energy estimation

$$E_{\nu}^{QE} = \frac{m_n^2 - (m_p - E_b)^2 - m_{\mu}^2 + 2(m_p - E_b)E_{\mu}}{2(m_p - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Works for both v and anti-v and is pretty good at estimating E_v for pure QE scatters but nuclear effects bias it low.

MINERvA Experiment @Fermilab Oregon State

5.4 Ton Active Scintillator Fiducial Volume Ran from 2010 to 2019

MINERVA

Oregon State

Quasi-elastic neutrino scattering on CH (scintillator)
Muons tracked and momentum analyzed

Protons > 100 MeV KE can be tracked

Neutrons only ~50% of the time

$$\nu_{\mu} + n \rightarrow \mu^{-} + p$$

The main background is π from resonances and FSI faking protons Identify π^+ by Michel electron π^0 decay showers Multiple charged tracks

11

New data taken in Medium Energy NuMI beam

Neutrino flux

Anti-neutrino flux

Absolute flux normalization via ν – e Scattering

Experimental signature is a very forward single electron state.

Statistics are 1021 events → uncertainty ~ 3%

Use v-e scattering to constrain the absolute v flux

Phys. Rev. D 100, 092001 (2019)

Flux and Fractional Uncertainty

 ν_{μ} flux in bins of neutrino energy before(black) and after(red) constraint is reduced by ~ 10 %

The flux uncertainty near the peak is reduced from 7.6 % to 3.9 % •

Now we can measure quasi-elastic $v + n \rightarrow \mu + p$

- Looking for $v + n \rightarrow \mu + p$ + possibly more nucleons
- Backgrounds would be π^{+-} and π^0 faking nucleons
- Select events based on dE/dx and Michel decay particle identification
- Constrain pion background using side band fits

Number of Isolated Clusters

Scaling Factors as Function of p_T :

 π^0 , $\pi^{+/-}$, July 28, 2020 $\pi^{+/-}$

Fit 3 scaling factors

Estimate background

Result: 2D neutrino cross-section measurement

825,258 events
After background subtraction

Carneiro et al., PhysRevLett.124.121801

Can we model this?

- Default GENIE 2.12.6
 - (Relativistic Fermi Gas)
- Add in Random Phase Approximation (RPA) to account for screening at low Q²
- Add ~20% 2p2h effects guided by Jlab results w/o RPA
- Add RPA and tune 2p2h to our neutrino data to get MnvGENIE v1

Compare to GENIE 2.12.6

- Tuned models can reproduce the high Q² behavior
- But significant discrepancies at low Q² for all models.
- More work is needed, let's look at other observables

Same data as previous page

Multinucleon Effects and the hadronic energy

 Look at CC triple differential cross section in pt, pz and available hadronic energy

 $-\Sigma T_p \sim \text{hadronic energy} \sim \omega$

Motivated by electron scattering data on C.

Megias et al., Phys.Rev. D94 (2016) 013012

Preview: Visible (recoil) Energy for CCQE-Like for neutrinos

Medium energy: Improved sensitivity at high Q² Explore regions at low Q².

look at the visible energy in bins of p_T and p_{\parallel}

$$E_{\text{available}} = \Sigma T_{\text{proton}}$$

Different way of looking at the leptonic-hadronic 4-momentum sharing.

JETP Seminar by Dan Ruterbories (Oct 25 2019)

Panel = Bin of $P_{\parallel,\mu}$ Cell = Bin of $P_{t,\mu}$ Bins = Bins of Recoil

Preview: Anti-neutrino CCQE-like

8.47 x10²⁰ POT 477,168 events after background subtraction

LE result with ~13K events: Phys. Rev. D **97**, no.5, 052002 (2018)

Muon transverse momentum (GeV/c)

Preview: Medium Energy Inclusive v Analysis

Will have smaller uncertainties – Flux ~4-5% . Better kinematic coverage – 4 new p_{\parallel} bins, 1 new p_{\top} bin

The event rates have consistent underprediction of data at high p_T and high p_{\parallel}

Conclusion and Future Plans

New cross section measurements with lower flux uncertainties and high statistics:

- 3D measurements and Transverse kinematic imbalance variables
- Nuclear dependence using nuclear targets (Pb, Fe, H₂O, He)
- Detect neutrons
- High W events for shallow and deep inelastic scattering

Long term:

 MINERVA has an active data preservation project to make these data valuable for the long term.

Recent MINERvA Papers

- A. Filkins et al., "Double-differential inclusive charged-current v_{μ} cross sections on hydrocarbon in MINERvA at $E_{\nu} \approx 3.5$ GeV," Phys. Rev. D **101**, no.11, 112007(2020)
- M. F. Carneiro *et al.*, "High-Statistics Measurement of Neutrino Quasielasticlike Scattering at 6 GeV on a Hydrocarbon Target," Phys. Rev. Lett. **124**, no.12, 121801 (2020)
- T. Cai et al., "Nucleon binding energy and transverse momentum imbalance in neutrino-nucleus reactions," Phys. Rev. D **101**, no.9, 092001 (2020)
- T. Le *et al.*, "Measurement of v_{μ}^{-} Charged-Current Single π^{-} Production on Hydrocarbon in the Few-GeV Region using MINERvA," Phys. Rev. D **100**, no.5, 052008 (2019)
- E. Valencia *et al.*, "Constraint of the MINER*v*A medium energy neutrino flux using neutrino-electron elastic scattering," Phys. Rev. D **100**, no.9, 092001 (2019)
- P. Stowell et al., "Tuning the GENIE Pion Production Model with MINER vA Data," Phys. Rev. D 100, no.7, 072005 (2019)
- M. Elkins *et al.*, "Neutron measurements from antineutrino hydrocarbon reactions," Phys. Rev. D **100**, no.5, 052002 (2019)
- D. Ruterbories et al., "Measurement of Quasielastic-Like Neutrino Scattering at $\langle E_{\nu} \rangle$ 3.5 GeV on a Hydrocarbon Target," Phys. Rev. D **99**, no.1, 012004 (2019)
- G. N. Perdue *et al.*, "Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment," JINST **13**, no.11, P11020 (2018)
- X. G. Lu *et al.*, "Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at $\langle E_v \rangle = 3$ GeV," Phys. Rev. Lett. **121**, no.2, 022504 (2018)
- R. Gran *et al.*, "Antineutrino Charged-Current Reactions on Hydro- carbon with Low Momentum Transfer," Phys. Rev. Lett. **120**, no.22, 221805 (2018)
- C. E. Patrick *et al.*, "Measurement of the Muon Antineutrino Double- Differential Cross Section for Quasielastic-like Scattering on Hydrocar- bon at $E_{\nu} \sim 3.5 \, \text{GeV}$," Phys. Rev. D **97**, no.5, 052002 (2018)