CPT violation sensitivity of NOvA, T2K and INO experiments using neutrino and antineutrino oscillation parameters

Daljeet Kaur SGTB Khalsa college, University of Delhi, India Email id: daljeet.kaur97@gmail.com

ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020

PRAGUE, CZECH REPUBLIC

1. Introduction

- Charge-Parity-Time (CPT) symmetry \rightarrow identical oscillation parameters for ν and $\bar{\nu}$
- If different mass and mixing parameters for ν and $\bar{\nu} \to \text{possible hint for CPT violation (Model-independent approach)}$
- Our focus to find sensitivity for $(\Delta m_{32}^2 \Delta \bar{m}_{32}^2)$ and $(\sin^2 \theta_{23} \sin^2 \bar{\theta}_{23})$ using long-baseline and atmospheric neutrino experiments in different possible combinations of octant for neutrinos and anti-neutrinos
- We show the joint sensitivity of the T2K, NOvA and INO experiments to such CPT violating observables

2. EXPERIMENTS

Iron-Calorimeter(ICAL)-Atmospheric neutrino experiment, Location: Tamilnadu, India

NOvA (NuMi off-axis ν_e appearance), long-

baseline neutrino experiment, Location: Ash River, Minnesota

The T2K (Tokai to Kamioka), long baseline, Location: Tokai, Japan

3. OSCILLATION PARAMETERS

Osc. parameters	True values	Marginalization range
$\sin^2(2\theta_{12})$	0.86	Fixed
$\Delta m_{21}^2 \; ({\rm eV^2})$	7.6×10^{-5}	Fixed
$\sin^2(\theta_{13})$	0.0234	Fixed
$\sin^2(\theta_{23})$	varied	0.3-0.7
$ \Delta m_{32}^2 \; ({\rm eV}^2)$	varied	$(2.0-3.0) \times 10^{-3}$
δ_{CP}	0.0	Fixed (INO)
δ_{CP}	0.0	$[0 - 360^{\circ}]$ (T2K,NOvA)

Table: Oscillation parameters for both ν and $\bar{\nu}$.

Possible combinations of octants for ν and $\bar{\nu}$:

Case 1: ν and $\bar{\nu}$ both in Higher Octant (HO) $[\sin^2 \theta_{23} (\sin^2 \bar{\theta}_{23})]$ in range 0.5-0.7

Case 2: ν and $\bar{\nu}$ both in Lower Octant (LO) $[\sin^2 \theta_{23} (\sin^2 \bar{\theta}_{23})]$ in range 0.3-0.5

Case 3: ν in HO and $\bar{\nu}$ in LO

Case 4: ν in LO and $\bar{\nu}$ in HO

 \rightarrow The experimental sensitivities for all the octants cases have been shown on a single frame with allowed regions at 1σ , 2σ and 3σ Confidence Level (CL) under Normal-Hierarchy assumption.

4. SIMULATION INPUTS

Features	INO	
Source	Atmospheric neutrino	
Runtime	10 years for ν_{μ} and $\bar{\nu}_{\mu}$	
Detector	50kton Iron Calorimeter	
Charge-id eff.	$\sim 99\%$ for μ^- and μ^+	
Direction eff.	1 degree (few GeV muons)	
Features	NOvA	
Baseline	810 km	
Run time	3 year ν and 3 year $\bar{\nu}$	
Detector	14 kton	
Signal eff.	$26\%(\nu_e)$, 41% $(\bar{\nu_e})$,100% $(\nu_{\mu}, \bar{\nu_{\mu}}$ CC)	
Background eff	as in Ref. [1]	
Features	T2K	
Baseline	295 km	
Run time	5 year ν and 5year $\bar{\nu}$	
Detector	22.5 kton	
Signal eff.	$87\% (\nu_e, \bar{\nu}_e), 100\% (\nu_\mu, \bar{\nu}_\mu CC)$	
Background eff.	as in Ref. [1]	

- \rightarrow Systematics used in analysis as given in Ref [1]
- \rightarrow GLoBES [2] simulation toolkit for long-baseline experiments and a c++ based based code for atmospheric ν experiment.

5. METHODOLOGY

- Identical oscillation parameters for ν and $\bar{\nu}$ have been considered as null hypothesis(i.e. $[\Delta(\Delta m_{32}^2) = (\Delta m_{32}^2 \Delta \bar{m}^2_{32}) = 0]$, and $[\Delta \sin^2 \theta_{23} = (\sin^2 \theta_{23} \sin^2 \bar{\theta}_{23}) = 0]$)
- To rule out the null hypothesis, true values of neutrino and anti-neutrino oscillation parameters (Δm_{32}^2 , $\sin^2\theta_{23}$, $\Delta \bar{m}_{32}^2$, $\sin^2\bar{\theta}_{23}$) have been varied within marginalisation range and generated true datasets
- A four dimensional grid search is performed for the predicted dataset. χ^2 is calculated between the true datasets and predicted datasets for each set of true values of oscillation parameters
- For each set of difference $\Delta(\Delta m_{32}^2)$ or $\Delta \sin^2 \theta_{23}$, we calculate $\Delta \chi^2 = \chi^2 \chi^2_{min}$ including marginalisation and plot it as the functions of desired set of differences

REFERENCES

- [1] Phys.Rev.D 101 (2020) 5, 5. DOI: 10.1103/Phys-RevD.101.055017
- [2] P. Huber et al., Comput. Phys. Commun. 167, 195 (2005)

Email id: daljeet.kaur97@gmail.com

6. RESULTS

Joint sensitivity of NOvA, T2K, INO for $\Delta \sin^2 \theta_{23}$ when (a) ν and $\bar{\nu}$ in HO, (b) ν and $\bar{\nu}$ in LO, (c) ν in HO and $\bar{\nu}$ in LO and (d) when ν in LO and $\bar{\nu}$ in HO and (e)for $\Delta (\Delta m_{32}^2) eV^2$ which is almost same for all octants

- Measurement of $\Delta \sin^2 \theta_{23}$ is largely affected by the existence of ν and $\bar{\nu}$ in particular octant
- All considered experiments are least sensitive for different octant combinations for neutrinos and anti-neutrinos
- For similar octant combinations (either LO or HO) for both ν and $\bar{\nu}$, Precise determination of $\Delta \sin^2 \theta_{23}$ for all the experiments
- Each experiment is able to measure $\Delta(\Delta m_{32}^2)$ quite significantly irrespective of different octant combinations

Conclusions

- Each experiment is able to measure $\Delta(\Delta m_{32}^2)$ quite significantly irrespective of different octant combinations
- But, measurement of $\Delta \sin^2 \theta_{23}$ is largely affected by the existence of ν and $\bar{\nu}$ in particular octant
- For similar octant combinations (either LO or HO) for both ν and $\bar{\nu}$, Precise determination of $\Delta \sin^2 \theta_{23}$ for all the experiments
- All considered experiments are least sensitive, if neutrinos and anti-neutrinos lie in different octant combinations.
- With the proposed fiducial volume and run time, the NOvA detector found the best among all the considered experiments for constraining $\Delta(\Delta m_{32}^2)$ and $\Delta \sin^2 \theta_{23}$
- NOvA+T2k joint results enhances the sensitivities for $\Delta \sin^2 \theta_{23}$ if the ν and $\bar{\nu}$ are in different octants. The present CPT bounds at 1σ confidence interval are shown in Table(f)

This work has been published in: **Phys.Rev.D 101 (2020) 5, 5. DOI: 10.1103/PhysRevD.101.055017**

THANK YOU!!