

Reactor Antineutrino Flux and Spectrum Measurement at Daya Bay

Fengpeng An, East China University of Science and Technology On behalf of the Daya Bay Collaboration

ICHEP 2020 | PRAGUE

Daya Bay Reactor Neutrino Experiment

Designed to measure θ_{13} , using antineutrinos produced by reactors.

6 commercial pressurized-water reactors, each with 2.9 GW thermal power.

8 identically designed Antineutrino Detectors (ADs), in 3 Experimental Halls (EHs).

Starting from Dec 24, 2011, discovered the non-zero θ_{13} mixing angle in 2012.

191 Collaborators, 41 Institutions

The Daya Bay Collaboration

Asia (24)

Beijing Normal Univ., CGNPG, CIAE, Congqing Univ., Dongguan Univ. Tech., ECUST, GXU, IHEP, Nanjing Univ., Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan (Sun Yat-sen) Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles Univ., JINR Dubna North America (15)

Brookhaven Natl Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Siena College, Temple University, UC Berkeley, Univ. of Cincinnati, Univ. of California Irvine, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

Reactor antineutrinos at Daya Bay

Six reactors with total thermal power of 17.4 GW, producing ~3.5x10²¹ electron antineutrinos per second

Antineutrinos are mainly produced by the beta decay of fission products of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu.

Antineutrino detection at Daya Bay

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels				
	Liquid	Mass	Function		
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target		
Outer acrylic	Liquid scintillator	20 t	Gamma catcher		
Stainless steel	Mineral oil	40 t	Radiation shielding		

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Combined detection efficiency: 80.2%± 1.2%

Energy resolution: $\sigma_{E}/E \approx 8.5\%/\sqrt{E[MeV]}$

Inverse Beta Decay (IBD)

 $\bar{\nu}_e + p \rightarrow e^+ + n \ (prompt)$ $\rightarrow +p \rightarrow D + \gamma \quad (2.2 \ MeV delayed)$ $\mapsto +Gd \to Gd^*$ $\mapsto Gd + \gamma's \ (8 \ MeV delayed)$

Reactor $\bar{\nu}_e$ flux and spectrum measurements at Daya Bay

Papar	roforonoo	data taking time	IBD events (million)	
paper	reference	(days)	Near Sites	Far Site
Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay	Phys. Rev. Lett. 116 , 061801 (2016)	217	0.30	0.04
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay	Chinese Physics C 41 , 013002 (2017)	621	1.09	0.15
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay	Phys. Rev. Lett. 118 , 251801 (2017)	1230	2.24	0.31
Improved Measurement of the Reactor Antineutrino Flux at Daya Bay	Phys. Rev. D 100 , 052004 (2019)	1230	2.24	0.31
Extraction of the ²³⁵ U and ²³⁹ Pu Antineutrino Spectra at Daya Bay	Phys. Rev. Lett. 123 , 111801 (2019)	1958	3.47	0.38

Recent systematic uncertainty improvements

• Improved energy scale uncertainty to ~0.5% (was 1.0% until 2018)

Nuclear Inst. and Methods in Physics Research, A 940 (2019) 230–242

Phys.Rev.Lett. **121** (2018) 24, 241805

- Reduced ⁹Li/⁸He background uncertainty from 45% to 30%
 Phys.Rev.Lett. **121** (2018) 24, 241805
- Reduced spent nuclear fuel(SNF) uncertainty from 100% to 30%
 Phys.Rev.Lett. 121 (2018) 24, 241805
- Improved neutron detection efficiency uncertainty from 1.69% to 0.74 %
 Phys. Rev. D 100, 052004(2019)
 Phys.Rev.Lett. 121 (2018) 24, 241805

Improved neutron detection efficiency uncertainty from 1.69% to 0.74 %

Comprehensive detector calibration and model study

Calibrations:

- 3 calibration axes (Inside and outside Gd-LS region)
- 2 sources (Am-C and Am-Be)
- Total **59** source-calibration points

Models:

- 3 neutron scatter models: free gas, water, and polyethylene
- 4 n-Gd capture gamma models: Geant4 native, Geant4 Phot. Eva., Nuclear Data Sheets, Caltech
- Total 20 simulated model combinations

|--|

	Previous		This work	
Source	Value	Rel err	Value	Rel err
Statistic		0.1%	7>	0.1%
Oscillation		0.1%	/	0.1%
Target proton		0.92%		0.92%
Reactor				
Power		0.5%		0.5%
energy/fission		0.2%		0.2%
IBD cross section	</td <td>0.12%</td> <td>· · · A /</td> <td>0.12%</td>	0.12%	· · · A /	0.12%
Fission fraction		0.6%		0.6%
Spent fuel		0.3%		0.3%
Nonequilibrium		0.2%		0.2%
EIBD				
ε_n	81.83%	1.69%	81.48%	0.74%
\mathcal{E}_{other}	98.49%	0.16%	98.49%	0.16%
Total		2.1%	5	1.5%

Reactor antineutrino flux measurements

Phys. Rev. D 100, 052004(2019), 1230 days

Daya Bay measurement to model (Huber-Mueller)

Previous: 621 days analysis : data/prediction = 0.946±0.020(exp.)

This work: 1230 days analysis : data/prediction = 0.952±0.014(exp.)

Agrees with other experiments: Global deficit = 0.945±0.007(exp.)±0.023(model)

Reactor antineutrino spectrum measurements

The spectral shape disagrees with the Huber-Mueller model at 5.3σ an excess in 4~6 MeV range is observed with a 6.2 σ discrepancy

10

Fission fraction evolution of Daya Bay reactors

^{burn-up (MWD/TU)} Fission fraction in a typical refueling cycle

Effective fission fraction of ²³⁹Pu of near sites

Stacking all refueling cycles

Effective fission fraction: Fission fraction 'observed' by detectors:

> ²³⁵U: 50% ~ 65% ²³⁹Pu: 24% ~ 35%

Extraction of ²³⁵U and ²³⁹Pu Spectra

Phys. Rev. Lett. 123, 111801 (2019), 1958 days

The 3.5M antineutrinos detected in near sites are divided into 20 groups ordered by the ²³⁹Pu effective fission fraction
Fit the ²³⁵U and ²³⁹Pu spectra , as two unknown arrays (26 energy bins for each isotope)

predicted spectra of the 20 groups

$$\chi^{2}(\underline{\eta^{5}, \eta^{9}}) = 2\sum_{djk} \left(S_{djk} - M_{djk} + M_{djk} \ln \frac{M_{djk}}{S_{djk}} \right) + f(\boldsymbol{\epsilon}, \boldsymbol{\Sigma})$$

measured spectra of the 20 groups

constraint on nuisance parameters

- Not sensitive to the ²³⁸U and ²⁴¹Pu contributions, using the Huber-Mueller model as their priors, but assign >10% uncertainties both in rate and shape
- Time-dependent contributions from non-equilibrium, SNF, nonlinear nuclides, and backgrounds are considered
- An independent analysis using Markov Chain Monte Carlo based on Bayesian inference obtains consistent results

Extracted ²³⁵U and ²³⁹Pu spectra

Phys. Rev. Lett. 123, 111801 (2019), 1958 days

- First extraction of the ²³⁵U and ²³⁹Pu spectra of commercial reactors
- In the 4~6 MeV energy range, the ²³⁵U and ²³⁹Pu spectra have similar bump structure like the total spectrum.
- Local deviation(bump): ²³⁵U ~4σ, ²³⁹Pu ~1.2σ

IBD yield ratio:

- 235 U: data/prediction = 0.92 ±0.023(exp.)±0.021(model)
- 239 Pu: data/prediction = 0.99 ±0.057(exp.) ±0.025(model)

²³⁵U is more likely to be responsible for "reactor $\bar{\nu}_e$ anomaly"

Extracted ²³⁵U and Pu-Combo Spectra

Phys. Rev. Lett. 123, 111801 (2019), 1958 days

• Combine ²³⁹Pu and ²⁴¹Pu as one term to reduce the Pu uncertainty

 $s_{\text{combo}} = s_{239} + 0.183 \times s_{241}$

- Dependence on the input of ²⁴¹Pu is largely removed
- The extracted Pu-combo spectrum uncertainty: 6% (9% for ²³⁹Pu-only)

Summary

- Recent developments:
 - Reduced particular systematic uncertainties
 - Acquired>50% more statistics than the previous analysis
- Improved measurement of reactor $\bar{\nu}_e$ flux agrees with other experiments:
 - Data/prediction=0.952±0.014(exp.) ±0.023(model)
- Improved measurement of reactor $\bar{\nu}_e$ spectrum:
 - Spectral shape disagrees with the Huber-Mueller prediction at 5.3σ
 - In the 4~6 MeV energy range the local deviation is ~ 6.3σ
- First extraction of the ²³⁵U and ²³⁹Pu spectra of commercial reactors
 - Both 235 U and 239 Pu has similar excess in 4~6 MeV range, with 4 σ and 1.2 σ deviations
 - ²³⁵U is more likely to be responsible for "reactor $\bar{
 u}_e$ anomaly"
 - Extracted spectra can be used as reference spectra for other experiments

backup slides

Reactor Antineutrino Spectrum Prediction

index: *i* for isotope, *r* for reactor, *d* for detector

Reactor spectrum prediction:

Effective fission fraction

index: *i* for isotope, *j* for group, *t* for time, *r* for reactor, *d* for detector

Define **effective fission number** for isotope *i* in group *j* :

$$F_{ij} \equiv \sum_{dt \in j} \sum_{r} \frac{1}{4\pi L_{rd}^2} \frac{W_{th}^{rt}}{\sum_{i} e_i f_{irt}} f_{irt} \cdot N_p^d \epsilon_d$$

Baseline Energy release per fission Proton number

Define **effective fission fraction** for isotope *i* in group *j* :

$$f_{ij}^{eff} \equiv \frac{F_{ij}}{\sum_i F_{ij}}$$