Hyper-Kamiokande

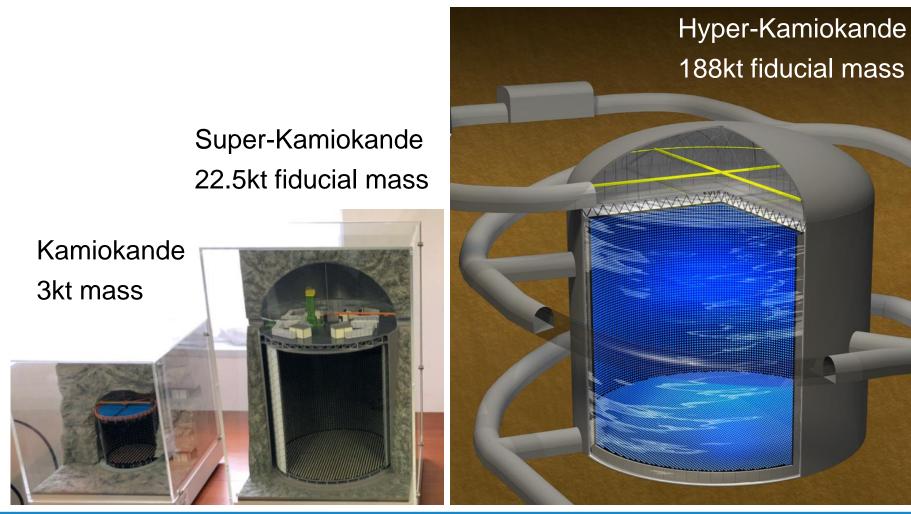
Long-baseline neutrino oscillation sensitivities with Hyper-Kamiokande

Mark Scott for the Hyper-Kamiokande Collaboration

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

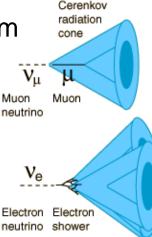
Hyper-Kamiokande project is approved!

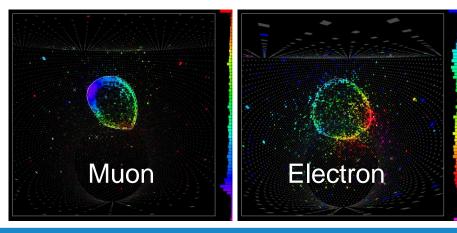
KEK will upgrade and operate J-PARC to produce 1.3 MW neutrino beam

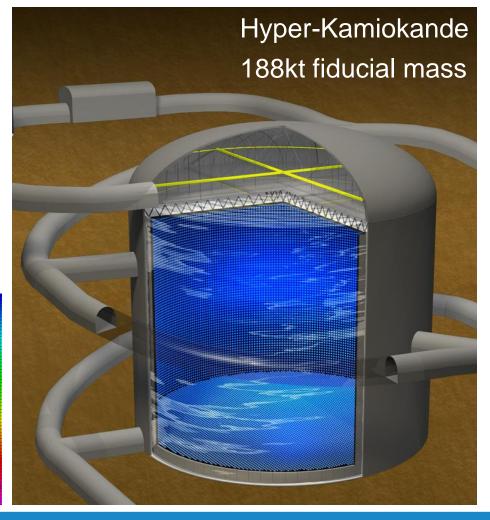

The University of Tokyo will construct and operate the Hyper-Kamiokande Detector

- Construction has begun
- Operation will begin in 2027

Hyper-Kamiokande Long-Baseline Physics 29th July 2020


Water Cherenkov detectors in Kamioka




Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Water Cherenkov detectors in Kamioka

- Cherenkov ring from charged particles
- >99% μ/e separation
- Momentum and direction reconstruction

Hyper-K

OD talk by S. Zsoldos:

Fri July 31, 11:45

Imperial College London

Hyper-Kamiokande experiment

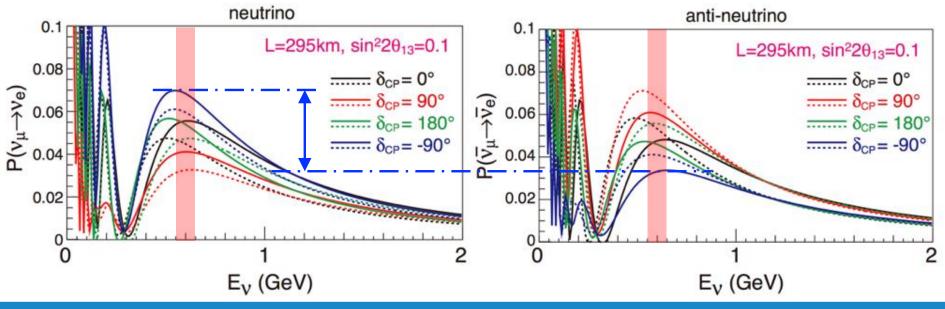
- Factor 20 increase in statistics compared to T2K:
 - Upgrade of the J-PARC neutrino beam to 1.3 MW
 - New far detector with 188kt fiducial volume
- New intermediate detector and inherited upgraded near detectors
- Improved photosensors with twice the quantum efficiency

Hyper-Kamiokande Long-Baseline Physics

29th July 2020

Talks by: T. Tashiro, Fri July 31, 10:45 G. De Rosa, Fri July 31, 11:00

J-PARC Accelerator Complex



Neutrino oscillations

 Measure flavour composition of beam as function of L / E

$$P_{\alpha \to \beta} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2}$$

 Compare neutrino beam and antineutrino beam to test CP symmetry

Mark Scott, ICHEP 2020

Imperial College London

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Neutrino oscillation formalism

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\overline{c_{ij} = \cos \theta_{ij}}_{ij}$$
• Three mixing angles, θ_{12} , θ_{23} and θ_{13}
• Two mass splittings, Δm^2_{12} and Δm^2_{23}
• One CP-violating phase, δ_{CP}
• Normal Inverted

Mark Scott, ICHEP 2020

 $(\mathbf{m}_{\mathbf{v}})$ Inverted Normal

Neutrino oscillation formalism

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\frac{\partial s \theta_{ij}}{\partial t_{ij}} \qquad Mass^{-1} \qquad m_{3}$ Is θ_{23} above or below 45° (octant)?
What is the neutrino mass ordering?
What is the neutrino mass ordering? $\frac{2.5 \times 10^{-5} \text{ eV}^{2}}{7.6 \times 10^{-5} \text{ eV}^{2}} \qquad m_{0}$ $c_{ij} = \cos \theta_{ij}$ $s_{ij} = \sin \theta_{ij}$

m₂

m.

Imperial College London

London Hyper-Kamiokande electron-like event samples

Imperial College

- Use Super-K MC, scaled to HK volume and exposure
- Expect approx:
 - 2300 v_e events
 - 1900 $\bar{\nu}_e$ events
 - Assuming $\sin(\delta_{CP}) = 0$
- Difference between neutrino and antineutrino rates gives δ_{CP}

Mark Scott, ICHEP 2020

Number of Events 800 600 400 200 0.5 1.5 1 v Reconstructed Energy (GeV)

Neutrino beam Use Super-K MC, HK 10 years (2.7E22 POT 1:3 v:⊽) Number of Events scaled to HK volume 250 and exposure 200

Expect approx:

Imperial College

London

- 2300 v_{ρ} events
- 1900 \bar{v}_e events
- Assuming $\sin(\delta_{CP}) = 0$
- Expect approx:
 - 9300 v_u events
 - 12300 \bar{v}_{μ} events

Antineutrino beam

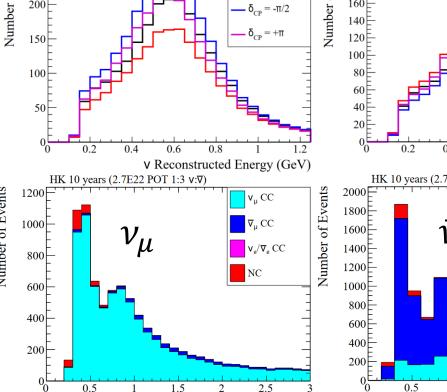
 $-\delta_{CP} = 0$

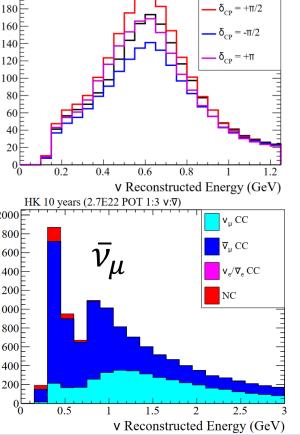
HK 10 years (2.7E22 POT 1:3 y:⊽)

220

200

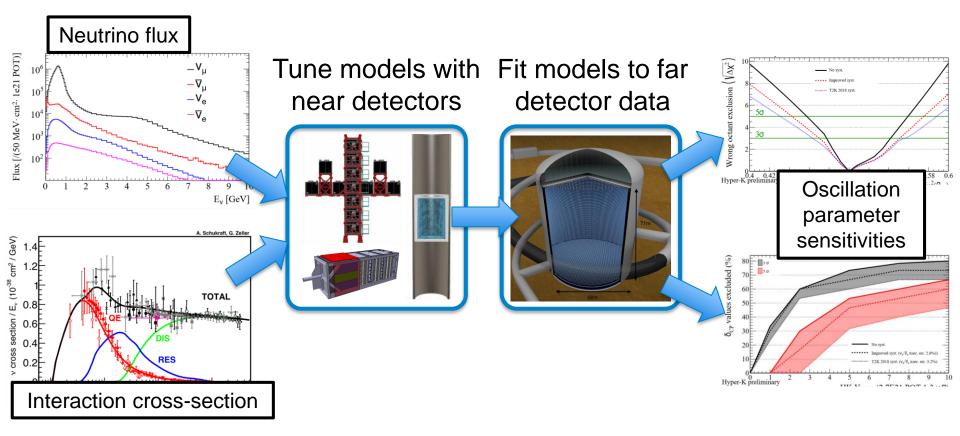
of Events


 $-\delta_{CP} = 0$

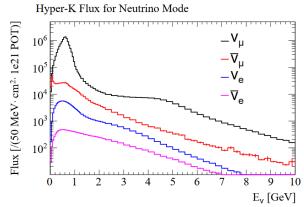

 $\delta_{CP} = +\pi/2$

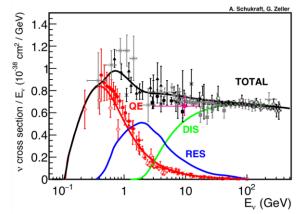
 $\delta_{\rm CP} = -\pi/2$

 $\delta_{CP} = +\pi$


Hyper-Kamiokande electron-like event samples

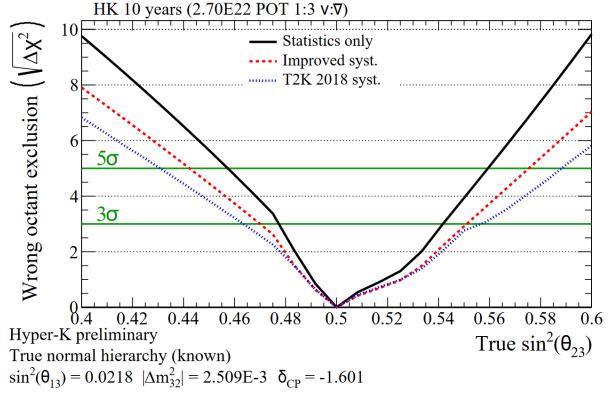
Imperial College London HK Oscillation Analysis


Based on T2K analysis method

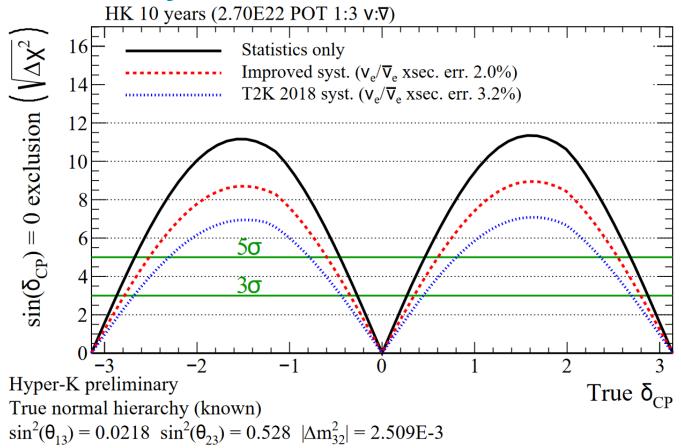

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Systematic uncertainties

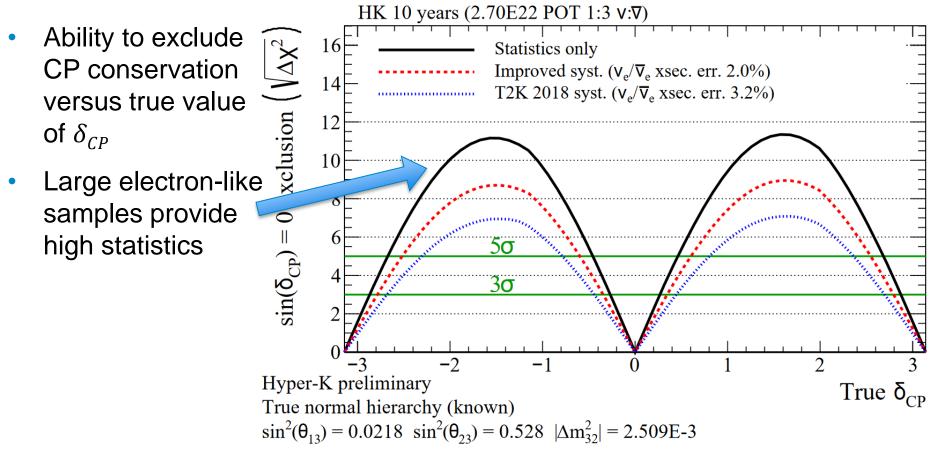
High statistics experiment, limited by systematics


- NA61/SHINE thin-target hadron-production data
- J-PARC neutrino beamline uncertainties

- NEUT 5.4 and T2K 2018 uncertainty model as baseline (<u>Nature</u> volume 580, pages339–344(2020))
- Nucleon removal energy
 uncertainty included directly
- Use T2K near detector fit to provide initial constraint on model uncertainties
- Scale uncertainties to expected Hyper-K near detector performance

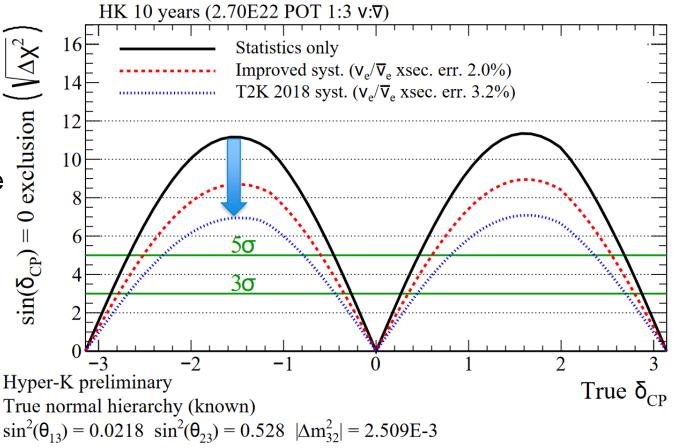

Lifting the $sin^2\theta_{23}$ degeneracy

- All analyses assume 10 years of HK data
 - 1:3 ratio of neutrino beam to antineutrino beam
 - Not including atmospheric neutrino sample
- Wrong octant exclusion versus true value of $\sin^2 \theta_{23}$
- Estimated systematic uncertainty on muon sample reduced from 4.6% to 1.9% with improved near detectors
- Achieve 3σ exclusion for:
 - $-\sin^2\theta_{23} < 0.47$
 - $-\sin^2\theta_{23} > 0.55$

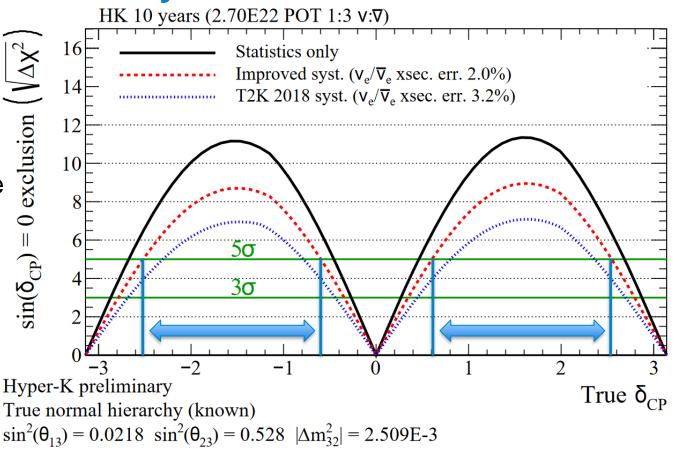


CP violation sensitivity

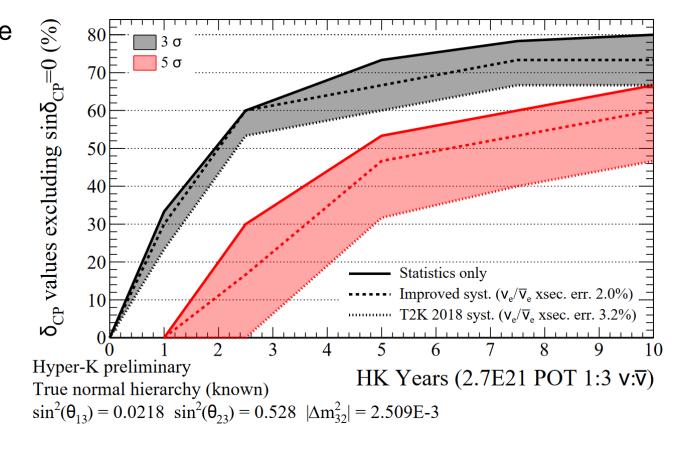
Ability to exclude CP conservation versus true value of δ_{CP}



CP violation sensitivity


CP violation sensitivity

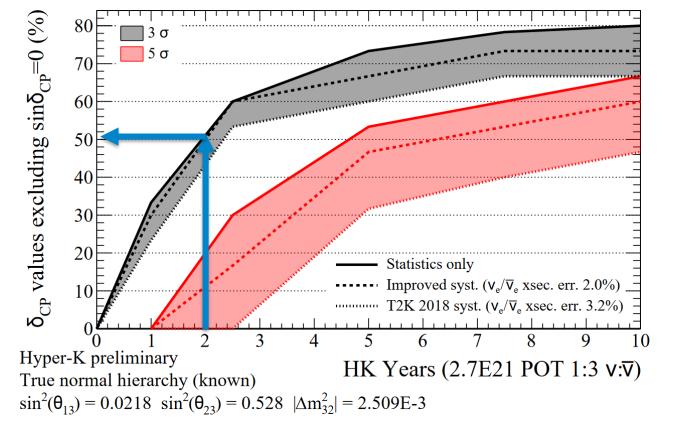
- Ability to exclude $\begin{bmatrix} \\ CP & conservation \\ versus true value \\ of \delta_{CP} \end{bmatrix}$
- Large electron-like samples provide high statistics
- Limited by systematics


CP violation sensitivity

- Ability to exclude $\begin{bmatrix} \\ CP & conservation \\ versus true value \\ of \delta_{CP} \end{bmatrix}$
- Large electron-like samples provide high statistics
- Limited by systematics
- Can exclude 60% of true δ_{CP} values at 5 σ

CP violation sensitivity over time

Percentage of true δ_{CP} values where CP conservation can be excluded as a function of running year



Hyper-Kamiokande Long-Baseline Physics

29th July 2020

CP violation sensitivity over time

- Percentage of true δ_{CP} values where CP conservation can be excluded as a function of running year
- Can achieve 3σ CP violation result over significant regions of δ_{CP} after 2 years operation

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Mark Scott, ICHEP 2020

 $\langle V \Delta X^2 \rangle$ 14 uncertainty Improved syst. (v_e/\overline{v}_e xsec. err. 2.0%) = 0 exclusion Improved syst. (v_e/\overline{v}_e xsec. err. 3.6%) dominates 12 10 Current theory 8 uncertainty 6 ~3.2% $sin(\delta_{CP})$ 30 Must measure this as well -2 2 Hyper-K preliminary True δ_{CP} as possible! True normal hierarchy (known) $\sin^2(\theta_{13}) = 0.0218 \ \sin^2(\theta_{23}) = 0.528 \ |\Delta m_{32}^2| = 2.509\text{E-3}$

HK 10 years (2.70E22 POT 1:3 ∨:∇)

Statistics only

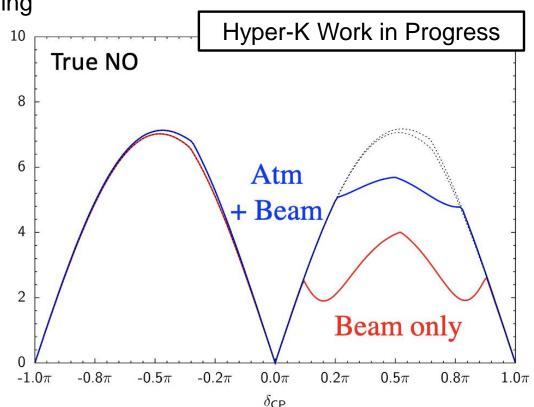
Improved syst. (v_e/\overline{v}_e xsec. err. 1.0%)

CPV and systematic uncertainties

16

Imperial College London

 $(v_e)/(\bar{v}_e)$


cross-section

Adding atmospheric neutrinos

 Atmospheric neutrinos have longer baseline and higher energies – gives sensitivity to neutrino mass ordering

ь

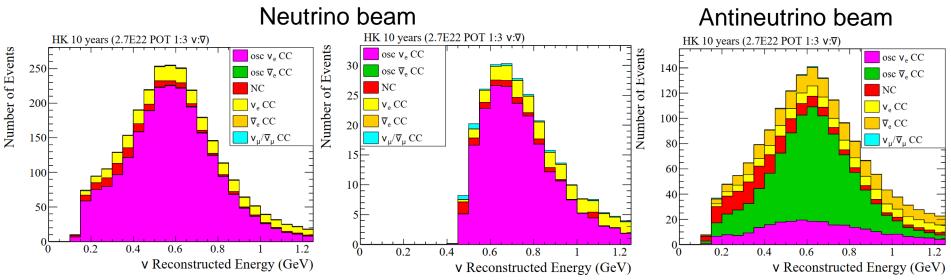
- Plot shows sensitivity to CP violation versus true value of δ_{CP}
- If MO unknown, beam analysis less sensitive for some values of δ_{CP}
- Joint atmospheric and beam analysis increases sensitivity above 5σ
- Can exclude incorrect mass ordering at 4 – 6σ significance (depending on value of sin²θ₂₃)

Summary

- Updated Hyper-K long-baseline oscillation parameter sensitivities
- After 10 years data taking $\sin(\delta_{CP}) = 0$ exclusion $\langle V \Delta \chi^2$ HK will: 8 Hyper-K improved syst. (v_e/\overline{v}_e xsec. err. 2.0%) HK Exclude CP conservation at 5 σ for 60% of δ_{CP} parameter space - Reach 4 - 6σ Г2Кexclusion of the wrong mass ordering - Achieve 3σ exclusion of wrong octant for 2022 2024 2026 2028 2030 2032 2034 $\sin^2\theta_{23} < 0.47$ and Hyper-K preliminary $\sin^2 \theta_{23} > 0.55$ True normal hierarchy (known) $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3} \ \delta_{CP} = -\pi/2$
- See talk by T. Yano, Thu 30 July, 10:30, for astrophysical neutrino sensitivities

2036

Year


Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

Supplementary slides

Hyper-Kamiokande electron-like sample breakdown

- A sample of CC-1 π events is included from the neutrino beam data
- The sample selects single-ring, electron-like events with the presence of a Michel electron tagging a pion below Cherenkov threshold
- The energy of this sample is calculated assuming a Δ_{1232} resonance

Hyper-Kamiokande Long-Baseline Physics 29th July 2020

exposure

Imperial College

Antineutrino beam:

Larger "wrong-

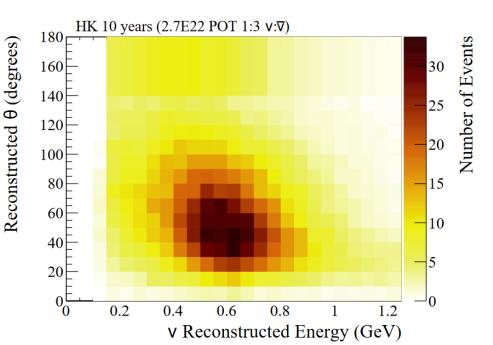
Larger neutral

sign" component

due to increased

London

- Expect approx:
 - 9300 ν_{μ} events
 - 12300 $\bar{\nu}_{\mu}$ events



Hyper-Kamiokande sample breakdown

Neutrino beam Antineutrino beam HK 10 years (2.7E22 POT 1:3 v:⊽) HK 10 years (2.7E22 POT 1:3 v:⊽) Number of Events Number of Events osc v_a CC osc V_e CC 140 250 osc ⊽_e CC osc V_e CC $\bar{\nu}_e$ NC NC 120 v_e 200 V_eCC V_eCC 100F ⊽_e CC ⊽_e CC $v_{\mu}/\overline{v}_{\mu}$ CC $v_{\mu}/\overline{v}_{\mu}$ CC 150 80F 60 100 40 current component 50 20 0^L 0 0.6 0.8 0.2 0.4 0.6 0.8 1.2 0.2 0.4 1.2 1 1 v Reconstructed Energy (GeV) v Reconstructed Energy (GeV) Number of Events Number of Events 2000 1200 $v_{\mu} CC$ V_{II} CC 1800F ⊽_u CC \overline{V}_{II} CC 1000 $\bar{\nu}_{\mu}$ 1600E v ∕v CC 1400F v_e/⊽_e CC 800 1200E NC NC 1000F 600 800F 400 600F 400F 200 200F 0.5 1.5 2 2.5 0.5 1.5 2 2.5 1 v Reconstructed Energy (GeV) v Reconstructed Energy (GeV)

Oscillation analysis fit

- Simultaneous likelihood fit of electron-like and muon-like samples at HK
- Profile systematics and oscillation parameters
- Fit electron-like samples in 2D (reconstructed energy vs lepton angle relative to the beam)
- Muon-like samples fit in 1D as function of reconstructed neutrino energy (assuming CCQE kinematics)
- Include flux and cross-section uncertainties using T2K 2018 near detector fit results
- Far detector uncertainties based on 2018 Super-K systematics

Scaled HK systematics

- Scale uncertainty on flux, cross-section and SK detector systematics by $1/\sqrt{N}$, where N = 8.7 is the relative increase in neutrino beam exposure from T2K to Hyper-K
- Studies from the ND280 Upgrade group (see talk #392 by D. Sgalaberna) and the HK Intermediate Water Cherenkov Detector were used to apply a further constraint to the cross-section model uncertainties:
 - A factor of 3 reduction on all non-quasi-elastic uncertainties
 - A factor of 2.5 reduction on all quasi-elastic uncertainties
 - A factor 2 reduction on all anti-neutrino uncertainties
 - A reduction in neutral current uncertainties to the ~10% level
- The electron neutrino / electron antineutrino cross-section ratio error was varied from ~3.6% to 1% to assess its impact
- No parameter was allowed to have an uncertainty of less than 1%

Uncertainty on event samples

T2K 2018 uncertainties on the HK event samples

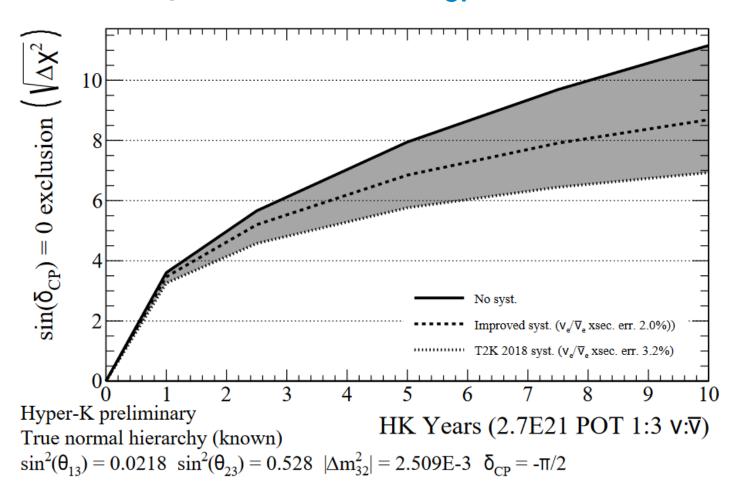
	1-ring μ -like		1-ring e-like				
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode 0 d.e.	$\bar{\nu}$ -mode 0 d.e.	ν -mode 1 d.e.	ν -mode/ $\bar{\nu}$ -mode 0 d.e.	
Cross section	4.77%	4.02%	5.61%	5.09%	5.05%	4.24%	
Flux	4.28%	4.12%	4.38%	4.26%	4.46%	2.07%	
Flux + xsec	3.27%	2.95%	4.33%	4.37%	4.99%	4.52%	
Detector+FSI	3.22%	2.76%	4.14%	4.39%	17.77%	2.06%	
All syst	4.63%	4.10%	5.97%	6.25%	18.49%	4.95%	

Table 6: Percentage error on event rate by error source and sample, for the T2K-2018 syst error model.

Scaled HK uncertainties, with a 3.6% error on the electron neutrino/antineutrino cross-section

	1-ring μ -like		1-ring e-like				
Error source	ν -mode	$\bar{\nu}$ -mode	ν -mode 0 d.e.	$\bar{\nu}$ -mode 0 d.e.	ν -mode 1 d.e.	ν -mode/ $\bar{\nu}$ -mode 0 d.e.	
Cross section	0.92%	0.77%	3.43%	2.62%	3.43%	3.72%	
Flux	0.85%	0.80%	0.87%	0.83%	0.89%	0.51%	
Flux + xsec	0.82%	0.72%	3.44%	2.62%	3.51%	3.76%	
Detector+FSI	1.69%	1.59%	1.54%	1.72%	5.22%	0.95%	
All syst	1.88%	1.74%	3.75%	3.12%	6.24%	3.88%	

Table 8: Percentage error on event rate by error source and sample, for the HK 3.6% error model.


Event number variations with δ_{CP}

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$
ν -mode beam 1-ring μ -like	9349.30	9335.51	9348.29	9365.49
$\bar{\nu}$ -mode beam 1-ring μ -like	12375.02	12344.43	12375.21	12408.46
ν -mode beam 1-ring e-like + 0 decay e	2739.76	2285.17	1845.99	2300.57
$\bar{\nu}$ -mode beam 1-ring e-like + 0 decay e	1623.97	1883.40	2117.98	1858.56
ν -mode beam 1-ring e -like + 1 decay e	257.63	223.18	179.45	213.91

Parameter(s)	AsimovA-2020
$\sin^2 heta_{23}$	0.528
$\sin^2 heta_{13}$	$0.0218{\pm}0.0007$
$\sin^2 heta_{12}$	0.307
$ \Delta m_{32}^2 $ (NH) / $ \Delta m_{13}^2 $ (IH)	$2.509 \times 10^{-3} \text{ eV}^2/\text{c}^4$
Δm^2_{21}	$7.53 \times 10^{-5} \text{ eV}^2/\text{c}^4$
δ_{CP}	-1.601
Mass Hierarchy	Normal

Mark Scott, ICHEP 2020

Imperial College London