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LEGEND and Neutrons from cryostat wall
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Dominant contributor of radiogenic neutrons

Created by fission and (α,n) reactions due to 
decay of heavy element impurities in the steel

Initial spectrum generated using NeoCBOT
S.Westerdale et al, NIMA 875 (2017) 57-64

GEANT4-based simulations suggest radiogenic 
neutron background subdominant to the 
cosmogenic neutron background

For 232Th (α,n) reaction

Mission statement : The LEGEND (Large Enriched 
Germanium Experiment for Neutrinoless ββ Decay) 
collaboration aims to develop a phased, Ge-76 based 
double-beta decay experimental program with discovery 
potential at a half-life beyond 1028 years, using existing 
resources as appropriate to expedite physics results.



In-situ cosmogenic neutrons
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Primarily created in hadronic muon showers

Large shielding with high Z material may 
lead to significant cosmogenic backgrounds

Complex shower development, largely 
dictated by muon path length and material

Shower development/isotope production 
investigated using Geant4 simulations

Shower equilibrium

Wide variety of isotopes generated by muon passage
Few isotopes can contribute to 76Ge 0vββ background

Cosmogenic isotopes 77Ge and 77mGe expected to 
contribute, based on decay energies and mean lifetime

Mitigated by shielding, active veto, and analysis cuts

From Eur. Phys. J. C (2018) 78:597



Mitigation options for cosmogenic neutrons
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• 10 cm thick shields with outer radius 2m centered on 
detector array

• Polyethylene moderator, with gadolinium or boron to capture
• Both options significantly reduced neutron flux on detectors

• 77Ge and 77mGe production rate roughly halved in both cases

• Additional radiogenic neutrons, such as (α,n) neutrons from 
borated PE impurities, reduce shielding effectiveness

• Isotopes added to liquid argon surrounding detectors:
• 131Xe, in 100ppm and 1000 ppm quantities
• 3He, in 0.1% and 1% mass fraction

• No significant change in neutron flux for 131Xe doping
• New neutrons are created in other channels

• Initial results of 3He study show reduced neutron flux
• More expensive to implement in practice

Polyethylene + neutron absorber

Liquid argon doping

Cosmogenic background highly dependent on host 
site for LEGEND-1000. SNOLAB depth assumed

μ


