Nwtral Current z° Rate

Laboratories
Collaboration )

Columbia University, Nevis
O ”ehalfofthe MicroBow

Viark Ross,-chergan

Juhg28 2020 R

uBooNP

@ coma unvinsiy. % Farmilab @



Motivation for studying Neutral Current (NC) ° 3 5+ ST T T Data staterr) | ]
: . ) . ol B 1 v, from u:’/ ]

events comes directly from MicroBooNE's flagship 5 [ - . from K _
. L . @ S, v fror ’
analyses; investigating the MiniBooNE low-energy excess 4_+ — ::’u;l;! E
(right) and in particular determining if the source of the | — .
. . . Constr. Syst. Error B

excess is electron or photon in origin. 3 + ....... Best Fit 7]
: MiniBooNE Collaboration: i

2 + 10.1103/PhysRevlett.121.221801 _]

~ i

X R : ]

2.8 () ¢ ajf 1 L e ]

_ 85 % P vt . B = i

e % *2 ~ g - .

) do < - ’a' 82 0.4 0.6 0.8 1 12 14 3.0

) (544 ESE (GeV)

Whereas MiniBooNE could not distinguish between
the Cherenkov cones produced from photons and
electrons, but MicroBooNE can and has multiple
analyses ongoing to select high-purity
single-electron and single-photon samples

See David Caratelli’'s talk on the
MicroBooNE low-energy excess
searches later in this session for

more details!
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Motivation II: NC =° Production in Argon

Using GENIE, the majority (~80%) of NC z°s in MicroBooNE are
expected to occur via resonant production of a A baryon which
subsequently decays back to a nucleon and pion.

Remaining ~20% from other sources including Coherent x°
production, Deep-Inelastic scattering events as well as z° not
created in the initial neutrino interaction but as a result of Final
\State Interactions (FSI) in the nucleus.

Ar‘go‘NeluTl | :
However, many of these important processes have very large 8L . L —]
uncertainties™ in GENIE partially due to very little data in argon B b emaeer
oo TS
: . g 1 ,—// """""""" —
e NC Coherent z° Normalization error: 100% T OH A
e Fractional cross-section for z° charge exchange: 50% s gfng1§:"{:0T VimodoBeam ]
. . . o101 —e— v Data ]
e Fractional cross-section for z° absorption: 30% £ — TAmon GENIE E
e Axial Mass used in modelling resonant production : 20% £ T2 Ao N i
e T

Mean Neutrino Energy (GeV)

[1] See Public Note: MICROBOONE-NOTE-1074-PUB Inclusive NC z° rate measurement by ArgoNeut: 1511.00041
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http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1074-PUB.pdf
https://arxiv.org/abs/1511.00941

NC Radiative A Decay - MicroBooNE's Single-Photon Search

Process has never been observed in the neutrino sector.

A Standard model source of single-photon events and a
possible explanation of the MiniBooNE low-energy excess

Measuring this channel is the goal of MicroBooNE's first
photon analysis

Approx ~0.6% Branching Ratio

Two selections ongoing, where we select photons
consistents with being from a Radiative A Decay both
with an associated proton track (so called “1y1p”
selection)

and without a proton track (so
called "1yop” selection):

detached

photon shower Lone photon
& shower
L}\O

no proton

& A single track (Op)
proton track (1p)
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NC single photon candidate 1y1p data event

uBooNE

Incoming
neutrino
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NC single photon candidate 1y1p data event NC z° + 1 Proton (2y1p) Candidate data event

uBooNE uBooNE

Incoming

Incoming neutrino
neutrino

2 5 cm MicroBooNE Data, Run 5462 Subrun 14 Event 732 Run 15318 Subrun 159 Event 7958
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NC single photon candidate 1y1p data event

Hypothetical NC z° Event

uBOONE uBOONE '112 : left the detecton:!

Incoming

Incoming neutrino

neutrino

Run 15318 Subrun 159 Event 7958

Topologically now indistinguishable from our Hypothetical: Subleading photon from z°
single photon signal exits detector before pair converting and is
thus not reconstructed
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NC single photon candidate 1y1p data event Hypothetical NC z° Event

uBOONE uBOONE 'ilz : left the detecton:!

Incoming

Incoming neutrino
neutrino

2 5 cm MicroBooNE Data, Run 5462 Subrun 14 Event 732 Run 15318 Subrun 159 Event 7958

There are many ways with which the secondary shower is lost:

Escapes the detector before pair-converting

Highly overlapping with leading shower (reconstructed as one shower)
Very low energy (< 30 MeV) where reconstruction efficiency is lower
Interference with coincident cosmic rays
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NC single photon candidate 1y1p data event Hypothetical NC z° Event

uBOONE uBOONE 'ilz : left the detecton:!

Incoming
Incoming neutrino
neutrino

Run 15318 Subrun 159 Event 7958

Key takeaway: NC 7° events outnumber true single-photon NC A radiative
events by over 100-to-1 and there are many ways for the z°'s to mimic our
signal

As such we developed an in-situ measurement of the NC z° events in
MicroBooNE to ensure we are simulating them correctly
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Developing a NC n° 2y1p selection

Selection begins with selecting all 2 shower and 1 track
events from Pandora pattern recognition framework [Eur.
Phys. J. C78, 1, 82 (2018)] alongside some additional
preselection cuts:

1. Shower conversion distance > 1cm : To minimize true
electron showers (blindness)

2. Neutrino vertex > 5cm from TPC wall: Remove
cosmic contamination

3. Leading shower energy > 30 MeV, subleading > 20
MeV

Z‘Y 1P Neutrino

Vertex h Proton Track

Primary Photon
Shower

Secondary Photon
Shower
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https://doi.org/10.1140/epjc/s10052-017-5481-6
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Developing a NC n° 2y1p selection

Selection begins with selecting all 2 shower and 1 track
events from Pandora pattern recognition framework [Eur.
Phys. J. C78, 1, 82 (2018)] alongside some additional
preselection cuts:

1. Shower conversion distance > 1cm : To minimize true
electron showers (blindness)

2. Neutrino vertex > 5cm from TPC wall: Remove
cosmic contamination

3. Leading shower energy > 30 MeV, subleading > 20

MeV
Z‘YIP Neutrino
Vertex Proton Track
7\
4 \
|
/
Primary Photon
Shower
Secondary Photon
Shower

~24% purity of NC 1 7°
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Repeat this for 2yop selection (i.e No Track) -26% purity of NC 1 7°
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Repeat this for 2yop selection (i.e No Track) -26% purity of NC 1 7°
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o

Cosmic Backgrounds Much smaller charged current z°
backgrounds, as longer muon track is
harder to “miss”
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Boosted Decision Trees

EA %
S5 Signal NC % BNB Background
N 7

E o 211p

Events [Area Normalized]

In order to increase the purity of the g s
selected events, we train two tailored 7 Simulation BDT
Boosted Decision Trees (BDT) to reject 7 Training

the primarily charged current z° and 02

cosmic backgrounds 0.15p

The BDT's use 10 various kinematic and
calorimetric variables

An example of an important
variable is: Track dE/dx (Energy
deposition per unit length)

Muons travel longer
distances while
minimally-ionizing at ~ 2
MeV/cm

e Isolates events with proton
tracks (higher dE/dx) for
2y1p selection
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travel short distances
before stopping with a
Bragg peak




BOOSted DeCISIon Trees g : Signal NC n® % BNB Background
- 047 » . Highly ionizing protons
In order to increase the purity of the %0'35:“ MicroBooNE Simulston - raliminary travel short distances
selected events, we train two tailored B 03p Simulation BDT / before stopping with a
Boosted Decision Trees (BDT) to reject 2V Training Bragg peak
the primarily charged current z° and 02
cosmic backgrounds 0.15p
0.1
0.05;
The BDT's use 10 various kinematic and O T2 4 6 8 10 12 4 16
. . . Reconstructed Track dE/dx [MeV/cm]
calorimetric variables 2 [T | e S e i
GC}IOOO | ———7 NC1n°Coherent 9.61 NC 1n° Non-Coherent 735.19
5 [ C—— NC2+n°40.82 @ CC v, 17°538.10
M [ g 3?181?3%5 ki (R:Snvf/:ze:g'ggsslﬁnisggta 1042.39

800 FAAAry Flux & XS Systematics : 3097.56 —@— Run 1+2+3 On-Beam Data 2923.00

2y1p 5.84E20 POT
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An example of an important
variable is: Track dE/dx (Energy
deposition per unit length)

Muons travel longer
distances while
minimally-ionizing at ~2 [N\

, MeV/cm
e Isolates events with proton 200

tracks (higher dE/dx) for
2y1p selection

llllllll]llll

Data/Prediction

o 2 4 6 8 70 12
Reconstructed Track dE/dx [MeV/cm]
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NC =° BDT Response for 2y1p

2] —— 1x SMNC A Radiative 2.07 T—— x2 SMNC A Radiative (LEE) 4.15 Good agreen ent between the reSULtlﬂg
ac) C—3 NC1n° g:oherent 9.61 S NC 17° Noon-Coherent 735.19 . \
C—— NC 2+ n°40.82 B CC v, 17°538.10
@ [ == BB Oerss7.00 ) CC v Intrinsic 26.21 simulated BDT response and MicroBooNE data.
s Dirt 110.02 === Run 1+2+3 Cosmic Data 1042.39
103 FAAAAy Flux & XS Systematics : 3097.56 —@— Run 1+2+3 On-Beam Data 2923.00

2 2y1p 5.84E20 POT ==
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C

S

o

©

o

o

2 a

S JRPUIR IO DL FUUE FIRUUE U DUV P

O 07— 02 03 04 05 06 07 08 09

BDT Response

More Background More NC z° Signal-Like

like: e.g charged
current z° events
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NC =° BDT Response for 2y1p

i2] 7 1x SM NC A Radiative 2.07 ——— *2 SM NC A Radiative (LEE) 4.15 Good agreement between the resulting
GCJ C—3 NC1n° g)oherent 9.61 NC 1 Noon-Coherent 735.19 . .
o [omm— et 0 E—CC v, 150558 10 simulated BDT response and MicroBooNE data.

s Dirt 110.02 Run 1+2+3 Cosmic Data 1042.39

[ BNB Other 587.00 3 CC v,/ Intrinsic 28.21
B=A
103 FAAAAy Flux & XS Systematics : 3097.56 —@— Run 1+2+3 On-Beam Data 2923.00

s 2y1p 5.84E20 POT =
2= MicroBooNE Preliminary 1

Place a cut on this BDT response in

z which we optimize the signal
L efficiency-times-purity
8 0 05.1 052 0%3 0.i4 0?5 0%6 0.57 0f8 ) Oi9
BDT Response
P Train a similar BDT for the 2y0p selection
More Background More NC #° Signal-Like (See Backup slides for details)

like: e.g charged
current z° events
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Final Selection - 2y1
rip Represents the largest NC z° selection in a

LArTPC in the world!
(2] 160[FL— 1x SM NC A Radiative 0.92 [ x2 SM NC A Radiative (LEE) 1.84
GC) - C— NC 1r° Coherent 1.31 NC 1r° Non-Coherent 504.86
> [- C— NC2+nr°20.30 B CCv, 1 n° 75.62
L 140 —__—_—_— BNB Other 80.72 ——3 CC v./¥; Intrinsic 5.64
[— s Dirt 16.09 === Run 1+2+3 Cosmic Data 97.11 o
- #4444 Flux & XS Systematics : 804.43 —@— Run 1+2+3 On-Beam Data 634.00 o,
120 ¥ e 63% pure sample of NC1x

2y1p 5.84E20 POT
MicroBooNE Preliminary

100 e Gaussian fit to data:

o Mean:137.6 + 2.1 MeV
o Width: 441 + 1.8 MeV

80

60

40

l|III|III|]II|III|III|

20
As this sample demands that a proton candidate

track is reconstructed, the NC coherent z°
components is almost negligible, less than 0.3%

Data/Prediction

0.25 03 0.35
Reconstructed n° Invariant Mass [GeV]
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Final Selection - 2y1p

Represents the largest NC z° selection in a

LArTPC in the world!
(2] 160 [ 1 1xSM NC A Radiative 0.92 [ x2 SM NC A Radiative (LEE) 1.84
GC) - C— NC 1r° Coherent 1.31 @ NC 17° Non-Coherent 504.86
S [C C— NC2+n°20.30 s CCv, 17°75.62
L 140 —__—_—_— BNB Other 80.72 B CC ve/v Intrinsic 5.64
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- #4444 Flux & XS Systematics : 804.43 —@— Run 1+2+3 On-Beam Data 634.00 o,
120 ¥ e 63% pure sample of NC1x
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100 e Gaussian fit to data:

o Mean:137.6 + 2.1 MeV
o Width: 441 + 1.8 MeV

80

60

40

|III|III|1II|III|III|

20

As this sample demands that a proton candidate

= 4:

g 15F : : % track is reconstructed, the NC coherent =°

e} b2/ 8 //, 9,,/ +, / J..,«/ Q N A . .

g 1 s ””“‘fﬁ’/ s e T A e B components is almost negligible, less than 0.3%
T 05F a 1@ »-§-| : @4 ,_i_. Tr] _‘_’HA ¢ “5”"//44'4/‘

© = : 5 S e 1

Q 0 0.1 0.15 02 0.25 03 035 04

Reconstructed n° Invariant Mass [GeV]

See approx 20% less events in data than expected in this 2y1p selection.
Perform an in-situ fit to the observed rate of NC z° ‘s to correct the GENIE prediction in
our simulation.
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Fitting the Coherent and Non-Coherent z° rates

1) 350 —__—— 1x SM NC A Radiative 0.92 [ x2 SM NC A Radiative (LEE) 1.84
5 = C—— NC 1n°Coherent 1.83 = NC 17° Non-Coherent 403.89
> F C—3 NC2+1°20.30 [ CC v, 17°75.62
W 300 —C——3 BNB Other 80.72 CC v/V;, Intrinsic 5.64
— B Dirt 16.09 Run 1+2+3 Cosmic Data 97.11
= AAAAtry Flux & XS Systematics : 703.98 —@— Run 1+2+3 On-Beam Data 634.00
250—
= 2y1p 5.84E20 POT
2000 2]’1p Mlcro.BooNE Preliminary 7
= Genie Corrected &
150— .
100—
50 :_ . - . . (777 P
s v W 00, 0 | | |
c  <F : : : : : : :
k] E ; ‘ ; ; ; ;
B 1.5 ‘ : ; ; ;
B B2 22 0 0P 4
o e S0 L o g ik G e g L i/ o
T 05F ; : ——
8 ; ; ; ; ; : : ;
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

©_is the angle the reconstructed 7° makes relative to

Implied cos(8,)

250

200

150

100

50

=
o N

Data/Prediction
o
(6]

o

the neutrino beam. We fit in this variable to extract best
sensitivity to coherent z° production

Best fit point (shown above)

e 40% Enhancement of Coherent z° production
e 20% Decrease of Non-Coherent z° production

Mark Ross-Lonergan

E C—— 1x SM NC A Radiative 0.51 [ x2 SM NC A Radiative (LEE) 1.03
= 1 NC 1=° Coherent 32.79 NC 1r° Non-Coherent 254.88

= C——3 NC2+n°9.06 S CCv, 17°37.25

= C—— BNB Other 49.36 3 CC v/¥; Intrinsic 2.07

[— s Dirt 10.77 F==>>1 Run 1+2+3 Cosmic Data 81.36

[= #45%4%4%% Flux & XS Systematics : 479.08 —@— Run 1+2+3 On-Beam Data 496.00

IlllllIllllllllllllllllllI

2y0p

2y0p 5.89E20 POT
MicrpBooNE Preliminary 7
Genie Corrected

HEipsimmmm

E ; VY, ., 4, Y ps 1 S £ y

. LG L L L o ag 2ag E e

T 08 06 04 02 0 02 04 06 08 1
cos(9)

Coherent =° production due to scattering off
the nucleus tends to produce a very forward
going =° with no additional tracks
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Other NC =° 2y1p reconstructed quantities

£ 100 1xSMNC A Radiative 0.62 [T—— x2 SM NC A Radiative (LEE) 1.84 £ E——= 1xSMNC ARadiative 0.92 —— x2 SMNC A Radiative (LEE) 1.84
c [ C——3 NC 1x° Coherent 1.83 NC 17° Non-Coherent 403.89 1= = C— NC 1n° Coherent 1.83 NC 17° Non-Coherent 403.89
Q [ &3 NC2+n°20.30 @ CC v, 1707562 L 160 —T—— NC2+20.30 @ CC v, 11°75.62
Y- oiieos T3 Rin 14343 Coamie Dt 07.11 B 4ol — D005 S OO RISt e
L - i =223 Ru i . . . .
8044444, Flux & XS Systematics : 703.98 —@— Run 1+2+3 On-Beam Data 634.00 140 [= AAAAA Flux & XS Systematics : 703.98 Run 1+2+3 On-Beam Data 634.00 Afte r CO rreCth n of no rma ll Zatl o n ,
2y1p 5.84E20 POT Z 2y1p 5.84E20 POT H H : H
MicroBooNE Preliminary z MicroBooNE Preliminary our simulation of the kinematics
Genie Corrected Genie Corrected o
of NC z° and subsequent decays

show very good agreement to
data, can only briefly touch on

Illllllllllllll

< . - them here
. T @‘If%m' < 2494
8 00 0‘,1 0.2 0.3 04 0.5 0.6 0T7 0.8 8 10 20 30 40 50 60 7;0 850 90 100
Reconstructed n° Momentum [GeV] Primary Shower Conversion Distance [cm] . . 0
Gives us confidence in our NC &
simulation, crucial to
constraining our backgrounds
Use selected showers to Reconstruct z° daughter for the single-photon analysis.
reconstruct the parent =° photon showers as far as
momentum spectrum. Peaks just ~100cm from interaction vertex
below 200 MeV as expected from
the Booster Neutrino Beam.
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The NC z° Constraint

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background

Events

Reco Bin j

Correlation Matrix
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The NC z° Constraint

Events

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background
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Effective x2 systematic uncertainty
reduction before/after constraint!
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e Provides a strong constraint to the main
backgrounds for MicroBooNE's single-photon
low-energy excess analysis
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e In-situ measurement allows for corrections to the
default GENIE prediction, favouring a 40% increase in
coherent NC =° production and a 20% reduction in
non-coherent NC 7° events.

Reconstructed n° Invariant Mass [GeV]

e Allresults shown here are for an initial ~6e20 POT,
with the final full MicroBooNE data set projected to
double the data at 12.3e20 POT

e More information on this analysis can be found in the
MicroBooNE single-photon public note:
MICROBOONE-NOTE-1087-PUB

Run 15318 Subrun 159 Event 7958
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1087-PUB.pdf
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NC z%s importance for MicroBooNE 1y1p candidate data event

nuBooNE

Where as the 7° backgrounds are under e — Missed 2"
control in the electron selections due to BNB Data p pointing
calorimetry and high spatial resolution, Run: 5845 tovertex |
[See talk by Wouter LINK] these tools are not Subrun: 30 4

Event: 1507

as useful in the photon selection as both our
signal and the NC z° background consist of
true photons.

In fact NC z°s make up over 80% of all
backgrounds to the single-photon analysis.

Understanding the NC z°'s is thus a critical
part of sMicroBooNE's strategy and for this
we need a high statistics, pure sample of
NC 1 z° events.
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NCPio’s as a background to MicroBooNE Electron Searches
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CC v, candidate 1e1p data event

uBooNE

Incoming
neutrino

Incoming
neutrino

RUN 8617 SUBRUN 46 EVENT 2328
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Hypothetical NC 1 z°

nBooNE

CC v, candidate 1e1p data event
'}’2 . left the detector

Incoming
neutrino

Incoming
neutrino

i K
HBOONE _
RUN 8617 SUBRUN 46 EVENT 2328
Run 15318 Subrun 159 Event 7958

Even if one of the photons in the z° decay fails to be reconstructed, the true electrons begin to
ionize the liquid argon immediately, where as the photon will, on average, travel a short
distance before pair converting thus leaving a visible gap.
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Calorimetric photon-electron separation

In addition to the visible gap between vertex and EM shower

Using ionization dE/dx:
e Single electrons begin as minimally ionizing (2 MeV/cm)
e Photons pair convert to e'/e” pairs, double ionizing (4 MeV/cm)
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FIG. 16 Existing measurements of the cross section for the
NC process, vup — vy pﬁ”, as a function of neutrino energy.
Also shown is the prediction from Reference (Casper, 2002)
assuming M4 = 1.1 GeV. The Gargamelle measurement
comes from a more recent re-analysis of this data (Hawker,
2002).
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FIG. 18 Existing measurements of the cross section for the
NC process, vyn — vun 7%, as a function of neutrino energy.
Also shown is the prediction from Reference (Casper, 2002)
assuming Ma = 1.1 GeV. The Gargamelle measurement
comes from a more recent re-analysis of this data (Hawker,
2002).
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From eV to EeV: Neutrino Cross-Sections Across Energy Scales

https.//arxiv.org/pdf/1305.7513.pdf
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CCv_ candidate data event Hypothetical NC 1 #°

nBooNE

'}’2 . left the detector

Incoming
neutrino

Incoming
neutrino

i K
HBOONE _
RUN 8617 SUBRUN 46 EVENT 2328
Run 15318 Subrun 159 Event 7958

Hypothetical A: Subleading photon from z°
exits detector before pair converting and is
thus not reconstructed..
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CCv_ candidate data event Hypothetical NC 1 #°

nBooNE

'}’2 . left the detector

Incoming G : : '.}’1: Cor-lverts
neutrino < SdE immediately

RUN 8617 SUBRUN 46 EVENT 2328

Incoming
neutrino

Run 15318 Subrun 159 Event 7958

Hypothetical B: Subleading photon from z° exits
Topologically now indistinguishable from our detector before pair converting and is thus not
single electron signal reconstructed. Leading photoning cpair converts
almost immediately

g

f ; -
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Shower Conversion Distance
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Sense Wires

The MicroBooNE Detector | Y, ¥ T

Liquid Argon TPC

MicroBooNE is an 89-ton surface
based Liquid Argon Time Projection
Chamber (LArTPC) that has been
collecting data in the same Fermilab /
BNB since Autumn 2015,  ihod
One of its primary goals is to

definitively identify if the origin of the

observed MiniBooNE Low Energy S/
Excess (LEE) is due to electrons or &/
photons.

TS O R R R R N
< 1 1 \ 1 \ e 1 X X
|| 1 - || 1 || 1. - E

This can be achieved due to LArTPC's Drift Electric Field /4.
. . / 4 ////«/,f
excellent spatial resolution and Ya®

. % ; [~
calorimetry # ie

Y wire plane waveforms

Figure 2 in JINST 12 P02017

For further details and the working principles of the MicroBooNE Detector
itself see Ralitsa’s talk
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MicroBooNE Cosmic Ray Tagger

https.//arxiv.org/pdf/1901.02862.p




Theory Prediction, Single Photon production

v(it)+ N - v(@)+ N+, 1)

is defined by the set of Feynman diagrams for the hadronic current shown in Fig. 1.

Z Y 7 v /z Y

N/ N,AN* \N N/ N,AN* \N :
N/\N

FIG. 1. (Color online) Feynman diagrams for the hadronic current of NC photon emission considered in Ref. [18]. The first
two diagrams stand for direct and crossed baryon pole terms with nucleons and resonances in the intermediate state: BP and
CBP with B = N, A(1232), N*(1440), N*(1520), N*(1535). The third diagram represents the t-channel pion exchange: mEz.

30 12
1 68% CL [ 68% CL
24 our model | | our model
w . no N* i -
2 v-mode 2
w 1w
6 L
httpS //arXIVorg/pdf/1407 6060 pdf 02 04 06 08 1 12 14 02 04 06 08 1 12 14

ESRGeV) EQ%Gev)

FIG. 4. (Color online) EQ® distributions of total NC events for the v (left) and 7 (right) modes. Our results, given by the
red solid lines are accompanied by grey error bands corresponding to a 68 % confidence level. The curves labeled as “no N*”
show results from our model without the N*(1440), N*(1520) and N*(1535) contributions. The “MB” histograms display the
MiniBooNE estimates [20]. Aqe denotes the size of the ESF bin in the experimental setup.




MiniBooNE
In situ Pio constraint
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FIG. 7: An absolute comparison of the 7° reconstructed mass
distribution between the neutrino data (12.84 x 10*° POT)
and the simulation for NC 7° events (top). Also shown is the
ratio between the data and Monte Carlo simulation (bottom).
The error bars show only statistical uncertainties.
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Representative example of a NC n° event in MicrobooNE

NC 1 #° Candidate 2p1p data event

uBooNE

Incoming
neutrino

Run 15318 Subrun 159 Event 7958
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Represents the largest NC z° selection in a LArTPC in the world!
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63% pure sample of NC 1 z°
Less than 0.3% coherent components.

Gaussian fit to data: Mean: 137.6 + 2.1 MeV, Width:
441+ 1.8 MeV
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64% pure sample of NC 1 #°

~30x% higher percentage of coherent pion
production (7.4%)

Gaussian fit to data Mean: 140.2 + 2.8 MeV,
Width: 49.9 + 2.7 MeV
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