Neutral Current π^0 Rate Measurements with uBooNE

Mark Ross-Lonergan

Columbia University, Nevis Laboratories On behalf of the MicroBooNE Collaboration

ICHEP 2020, Virtual Prague

July 28th 2020

single-electron and single-photon samples Mark Ross-Lonergan

July 28th 2020

See David Caratelli's talk on the MicroBooNE low-energy excess searches later in this session for more details!

Motivation for studying Neutral Current (NC) π° events comes directly from MicroBooNE's flagship analyses; investigating the MiniBooNE low-energy excess (right) and in particular determining if the source of the excess is **electron** or **photon** in origin.

Whereas MiniBooNE could not distinguish between

the Cherenkov cones produced from photons and

electrons, but MicroBooNE can and has multiple

analyses ongoing to select high-purity

Motivation II: NC π^{o} Production in Argon

Using **GENIE**, the majority (~80%) of NC π° s in MicroBooNE are expected to occur via **resonant production of a** Δ **baryon** which subsequently decays back to a nucleon and pion.

Remaining ~20% from other sources including **Coherent** π^{o} production, **Deep-Inelastic** scattering events as well as π^{o} not created in the initial neutrino interaction but as a result of **Final State Interactions** (FSI) in the nucleus.

However, many of these important processes have **very large uncertainties**^[1] in GENIE partially due to **very little data** in argon

- NC Coherent π° Normalization error: **100%**
- Fractional cross-section for π° charge exchange: **50%**
- Fractional cross-section for π° absorption: **30%**
- Axial Mass used in modelling resonant production : 20%

[1] See Public Note: MICROBOONE-NOTE-1074-PUB

NC Radiative <u>A Decay</u> - MicroBooNE's Single-Photon Search

Process has **never been observed** in the neutrino sector.

A Standard model source of single-photon events and a possible explanation of the MiniBooNE low-energy excess

Measuring this channel is the goal of MicroBooNE's first photon analysis

Two selections ongoing, where we select photons consistents with being from a Radiative Δ Decay both with an associated proton track (so called "1y1p" selection)

and without a proton track (so called "1yop" selection):

NC single photon candidate $1\gamma 1p$ data event

NC single photon candidate $1\gamma 1p$ data event

NC π° + 1 Proton (2 γ 1p) Candidate data event

NC single photon candidate 1y1p data event

Topologically now **indistinguishable** from our single photon signal.

Hypothetical NC π° Event

Hypothetical: Subleading photon from π° exits detector before pair converting and is thus not reconstructed

NC single photon candidate $1\gamma 1p$ data event

Hypothetical NC π° Event

There are many ways with which the secondary shower is lost:

- Escapes the detector before pair-converting
- Highly **overlapping** with leading shower (reconstructed as one shower)
- Very **low energy** (< 30 MeV) where reconstruction efficiency is lower
- Interference with coincident **cosmic rays**

NC single photon candidate $1\gamma 1p$ data event

Hypothetical NC π° Event

Key takeaway: NC π° events outnumber true single-photon NC Δ radiative events by over **100-to-1** and there are *many ways* for the π° 's to mimic our signal

As such we developed an **in-situ measurement of the NC** π^{o} events in MicroBooNE to ensure we are simulating them correctly

Developing a NC π° 2 γ 1p selection

Selection begins with selecting all **2 shower and 1 track** events from **Pandora pattern recognition framework** [Eur. Phys. J. C78, 1, 82 (2018)] alongside some additional preselection cuts:

- 1. Shower conversion distance > 1cm : To minimize true electron showers (blindness)
- 2. Neutrino vertex > 5cm from TPC wall: Remove cosmic contamination
- 3. Leading shower energy > 30 MeV, subleading > 20 MeV

Developing a NC π° 2 γ 1p selection

Selection begins with selecting all **2 shower and 1 track** events from **Pandora pattern recognition framework** [Eur. Phys. J. C78, 1, 82 (2018)] alongside some additional preselection cuts:

- 1. Shower conversion distance > 1cm : To minimize true electron showers (blindness)
- 2. Neutrino vertex > 5cm from TPC wall: Remove cosmic contamination
- 3. Leading shower energy > 30 MeV, subleading > 20 MeV

Developing a NC π° 2 γ 1p selection

Selection begins with selecting all 2 shower and 1 track events from Pandora pattern recognition framework [Eur. Phys. J. C78, 1, 82 (2018) alongside some additional preselection cuts:

- 1. Shower conversion distance > 1cm : To minimize true electron showers (blindness)
- 2. Neutrino vertex > 5cm from TPC wall: Remove cosmic contamination
- 3. **Leading shower energy** > 30 MeV, subleading > 20 MeV

~24% purity of NC 1 π°

12

July 28th 2020

Boosted Decision Trees

In order to **increase the purity** of the selected events, we train **two tailored Boosted Decision Trees** (BDT) to reject the primarily charged current π° and cosmic backgrounds

The BDT's use 10 various kinematic and calorimetric variables

An example of an important variable is: **Track dE/dx** (Energy deposition per unit length)

 Isolates events with proton tracks (higher dE/dx) for 2γ1p selection

Highly ionizing **protons** travel short distances before stopping with a Bragg peak

Boosted Decision Trees

In order to increase the purity of the selected events, we train two tailored **Boosted Decision Trees** (BDT) to reject the primarily charged current π° and cosmic backgrounds

The BDT's use 10 various kinematic and calorimetric variables

An example of an important variable is: Track dE/dx (Energy deposition per unit length)

Isolates events with proton tracks (higher dE/dx) for 2**y**1p selection

NC π° BDT Response for 2 γ 1p

Good agreement between the resulting simulated BDT response and MicroBooNE data.

NC π° BDT Response for 2 γ 1p

Good agreement between the resulting simulated BDT response and MicroBooNE data.

Place **a cut** on this BDT response in which we optimize the signal efficiency-times-purity

Train a similar BDT for the 2γ Op selection (See Backup slides for details)

Final Selection - $2\gamma 1p$

Represents the largest NC π° selection in a LArTPC in the world!

- 63% pure sample of NC 1 π°
- Gaussian fit to data:
 - Mean: **137.6** ± 2.1 MeV
 - Width: 44.1 ± 1.8 MeV

As this sample demands that a proton candidate track is reconstructed, the NC coherent π° components is almost negligible, less than 0.3%

Final Selection - $2\gamma 1p$

Represents the largest NC π^{o} selection in a LArTPC in the world!

- 63% pure sample of NC 1 π°
- Gaussian fit to data:
 - Mean: **137.6** ± 2.1 MeV
 - Width: 44.1 ± 1.8 MeV

As this sample demands that a proton candidate track is reconstructed, the NC coherent π° components is almost negligible, less than 0.3%

See approx 20% less events in data than expected in this 2 γ 1p selection. Perform an in-situ **fit** to the observed rate of NC π° 's to correct the GENIE prediction in our simulation.

Fitting the Coherent and Non-Coherent π° rates

 Θ_{π} is the angle the reconstructed π° makes relative to the neutrino beam. We fit in this variable to extract best sensitivity to coherent π° production

Best fit point (shown above)

- **40% Enhancement** of Coherent π° production
- **20% Decrease** of Non-Coherent π° production

x2 SM NC A Radiative (LEE) 1.03

Run 1+2+3 On-Beam Data 496.00

NC 1 nº Non-Coherent 254.88

Run 1+2+3 Cosmic Data 81.36

CC v_µ 1 πº 37.25

MicroBooNE Preliminary

0.4

0.6

0.2

0.8

 $\cos(\theta_{\pi^0})$

2y0p 5.89E20 POT

Genie Corrected

CC ve/ve Intrinsic 2.07

1x SM NC ∆ Radiative 0.51

Flux & XS Systematics : 479.08

NC 1 π^0 Coherent 32.79

NC 2+ nº 9.06

Dirt 10.77

2γ0p

-0.8

-0.6

-0.4

-0.2

BNB Other 49.36

Events

300

250

200

150F

100

Data/Prediction

Other NC π° 2 γ 1p reconstructed quantities

After correction of normalization, our simulation of the kinematics of NC π° and subsequent decays show **very good agreement to data**, can only briefly touch on them here

Gives us confidence in our NC π° simulation, crucial to **constraining our backgrounds** for the single-photon analysis.

The NC π° Constraint

Events

1x SM NC ∆ Radiative 1.07

x2 SM NC Δ Radiative (LEE) 2.14

The NC π° Constraint

Events

1x SM NC ∆ Radiative 1.07

x2 SM NC Δ Radiative (LEE) 2.14

Conclusions

- Presented the largest selection of NC π° in a LArTPC in the world
- Provides a strong constraint to the main backgrounds for MicroBooNE's single-photon low-energy excess analysis
- In-situ measurement allows for corrections to the default GENIE prediction, favouring a 40% increase in coherent NC π^o production and a 20% reduction in non-coherent NC π^o events.
- All results shown here are for an initial ~6e20 POT, with the final full MicroBooNE data set projected to double the data at 12.3e20 POT
- More information on this analysis can be found in the MicroBooNE single-photon **public note**: <u>MICROBOONE-NOTE-1087-PUB</u>

Mark Ross-Lonergan

July 28th 2020

Backup Slides

NC π° 's importance for MicroBooNE

Where as the π° backgrounds are under control in the electron selections due to **calorimetry** and **high spatial resolution**,

[See talk by Wouter LINK] these tools are not as useful in the photon selection as both our signal and the NC π° background consist of true photons.

In fact NC π^{o} 's make up **over 80%** of all backgrounds to the single-photon analysis.

Understanding the NC π° 's is thus a critical part of sMicroBooNE's strategy and for this we need a **high statistics, pure sample of NC 1** π° **events**. 1γ 1p candidate data event

July 28th 2020

NCPio's as a background to MicroBooNE Electron Searches

July 28th 2020

Even if one of the photons in the π° decay fails to be reconstructed, the **true electrons** begin to ionize the liquid argon immediately, where as the **photon** will, on average, travel a short distance before pair converting thus leaving a **visible gap**.

Calorimetric photon-electron separation

In addition to the visible gap between vertex and EM shower

Using ionization dE/dx:

- Single electrons begin as minimally ionizing (2 MeV/cm)
- Photons pair convert to e⁺/e⁻ pairs, double ionizing (4 MeV/cm)

From eV to EeV: Neutrino Cross-Sections Across Energy Scales

FIG. 16 Existing measurements of the cross section for the NC process, $\nu_{\mu} p \rightarrow \nu_{\mu} p \pi^{0}$, as a function of neutrino energy. Also shown is the prediction from Reference (Casper, 2002) assuming $M_{A} = 1.1$ GeV. The Gargamelle measurement comes from a more recent re-analysis of this data (Hawker, 2002).

FIG. 18 Existing measurements of the cross section for the NC process, $\nu_{\mu} n \rightarrow \nu_{\mu} n \pi^0$, as a function of neutrino energy. Also shown is the prediction from Reference (Casper, 2002) assuming $M_A = 1.1$ GeV. The Gargamelle measurement comes from a more recent re-analysis of this data (Hawker, 2002).

https://arxiv.org/pdf/1305.7513.pdf

Hypothetical NC 1 π° $CC v_a$ candidate data event γ_2 : left the detector **µBooNE** *Y*₁ Incoming neutrino Incoming neutrino **µBooNE** р p RUN 8617 SUBRUN 46 EVENT 2328 14 cm 12 cm Run 15318 Subrun 159 Event 7958

Hypothetical A: Subleading photon from π° exits detector before pair converting and is thus not reconstructed..

July 28th 2020

Topologically now **indistinguishable** from our single electron signal.

Hypothetical B: Subleading photon from π° exits detector before pair converting and is thus not reconstructed. Leading photoning cpair converts almost immediately

Mark Ross-Lonergan J

July 28th 2020

Shower Conversion Distance

The MicroBooNE Detector

MicroBooNE is an 89-ton surface based Liquid Argon Time Projection Chamber (LArTPC) that has been collecting data in the same Fermilab BNB since Autumn 2015.

One of its **primary goals** is to definitively identify if the origin of the observed MiniBooNE Low Energy Excess **(LEE)** is **due to electrons** or **photons**.

This can be achieved due to LArTPC's excellent spatial resolution and calorimetry

For further details and the working principles of the MicroBooNE Detector itself see Ralitsa's talk

MicroBooNE Cosmic Ray Tagger

https://arxiv.org/pdf/1901.02862.p

Theory Prediction, Single Photon production

(1)

is defined by the set of Feynman diagrams for the hadronic current shown in Fig. 1.

 $\nu(\bar{\nu}) + N \rightarrow \nu(\bar{\nu}) + N + \gamma$,

FIG. 1. (Color online) Feynman diagrams for the hadronic current of NC photon emission considered in Ref. [18]. The first two diagrams stand for direct and crossed baryon pole terms with nucleons and resonances in the intermediate state: BP and CBP with B = N, $\Delta(1232)$, $N^*(1440)$, $N^*(1520)$, $N^*(1535)$. The third diagram represents the t-channel pion exchange: πEx .

FIG. 4. (Color online) E_{ν}^{QE} distributions of total NC γ events for the ν (left) and $\bar{\nu}$ (right) modes. Our results, given by the red solid lines are accompanied by grey error bands corresponding to a 68 % confidence level. The curves labeled as "no N^* " show results from our model without the $N^*(1440)$, $N^*(1520)$ and $N^*(1535)$ contributions. The "MB" histograms display the MiniBooNE estimates [20]. Δ_{QE} denotes the size of the E_{ν}^{QE} bin in the experimental setup.

https://arxiv.org/pdf/1407.6060.pdf

MiniBooNE In situ Pi0 constraint

FIG. 7: An absolute comparison of the π^0 reconstructed mass distribution between the neutrino data (12.84 × 10²⁰ POT) and the simulation for NC π^0 events (top). Also shown is the ratio between the data and Monte Carlo simulation (bottom). The error bars show only statistical uncertainties.

Representative example of a NC π° event in MicrobooNE

NC 1 π° Candidate 2 γ 1p data event

Represents the largest NC π° selection in a LArTPC in the world!

- 63% pure sample of NC 1 π°
- Less than 0.3% coherent components.
- Gaussian fit to data: Mean: 137.6 ± 2.1 MeV, Width: 44.1 ± 1.8 MeV

- 64% pure sample of NC 1 π°
- ~30x higher percentage of coherent pion production (7.4%)
- Gaussian fit to data Mean: 140.2 ± 2.8 MeV, Width: 49.9 ± 2.7 MeV