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OUTLINE

The measurement of the νe electron
kinematics is crucial towards
understanding the nature of the observed
excess of low-energy electromagnetic-like
events at MiniBooNE.

1. Cosmic rejection.

2. νe’s in MicroBooNE.

3. Electron identification.

4. νe CC Event selection.

5. Sideband results & near-future.
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NEUTRINO BEAMS AT FERMILAB
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THE MICROBOONE EXPERIMENT

Electron Neutrino Physics
• Electron identification in Liquid Argon Time
Projection Chambers.

• Further investigate the low-energy excess
observed by MiniBooNE [1].

• Measuring the ≈0.5% νe component in a
muon neutrino beam.

• Cross-section measurements on argon [2, 3].
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νe’S IN MICROBOONE: THE ACCOMPLISHMENTS

Detector Understanding
• Signal processing [5, 6].
• Detector calibration [7].
• Pandora event reconstruction [8].

Systematic Uncertainties
• Neutrino flux from beam.
• Cross-section modelling (Genie) [9].
• Secondary Interactions (GEANT).
• Detector effects [10].

Background rejection
• Cosmic activity [11].
• Muon neutrino backgrounds.

Search for Electron neutrinos
• Particle identification:

• Showers: e/γ
• Tracks: p/µ

• Event topologies.
• Kinematics of the electron.

Talk by Ralitsa Sharankova: The MicroBooNE Experiment,
Operation, Performance and Upgrade of Present Detectors
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νe’S IN MICROBOONE: STEPS TOWARDS UNBLINDING

Selection,
Systematic

uncertainties 

Far sideband
unblinding:

Low-energy
signal box
unblinding

Reconstruction,
Calibration,
Cross-section 
tuning

• MicroBooNE follows a blind analysis strategy to investigate the MiniBooNE result.
• Reconstruction and selection being developed on an unbiased sub-set
corresponding to 5× 1019 protons-on-target.

• On the cusp of unblinding a 3-year data-set, containing 7× 1020
protons-on-target.

Brand new results shown on sideband
containing electron neutrinos with a reconstructed energy above 1 GeV!
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ELECTRON NEUTRINO SELECTION: OVERVIEW

Cosmic rejection

Fiducial volume &
Electromagnetic

shower

Event selection

Proton selection,
Muon rejection &

π0 tagging

Electron 
identification
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COSMIC ACTIVITY @ MICROBOONE

• MicroBooNE is a surface detector.
• 5 kHz cosmic muon rate.
• Approximately 24 muons per triggered event.
• Modelled using Off Beam data.

→ Cosmic rejection tools as
first selection steps in all analyses!
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COSMIC REJECTION TOOLS

1. Require light in-time with the accelerator trigger.
2. Remove tracks geometrically crossing the detector.
3. Identify muons stopping in the TPC using calorimetry.

4. Match the light signal to TPC activity in charge and position.

Neutrino efficiency of ≈84% and cosmic rejection of 99.8%.

Wouter Van De Pontseele 8



COSMIC REJECTION TOOLS

1. Require light in-time with the accelerator trigger.
2. Remove tracks geometrically crossing the detector.
3. Identify muons stopping in the TPC using calorimetry.
4. Match the light signal to TPC activity in charge and position.

Neutrino efficiency of ≈84% and cosmic rejection of 99.8%.

Wouter Van De Pontseele 8



COSMIC REJECTION TOOLS

Cosmic rejection efficiency for charged-current interactions
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1. Require light in-time with the accelerator trigger.
2. Remove tracks geometrically crossing the detector.
3. Identify muons stopping in the TPC using calorimetry.
4. Match the light signal to TPC activity in charge and position.

Neutrino efficiency of ≈84% and cosmic rejection of 99.8%.
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ELECTRON NEUTRINOS IN MICROBOONE: AN INCLUSIVE APPROACH

Talk by Raquel Castillo Fernandez:
Recent Cross-section Measurements from MicroBooNE.
⇒ Argon is complicated and cross-section modelling

carries large uncertainties.

At the Booster Neutrino Beam, < E(νe) >≈ 1 GeV,
A variety of final states are expected:
• 1e0p0π: dominant below ≈0.3 GeV.
• 1eNp0π
• 1eNpMπ: dominant above ≈2 GeV.

⇒ Important to perform an inclusive measurement
to support observations in low-energy or exclusive
channels.

⇒ Talk by David Caratelli
The status of the low-energy excess.
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ELECTRON NEUTRINO SELECTION: PHOTONS VS ELECTRONS

Cosmic rejection

Fiducial volume &
Electromagnetic

shower

Event selection

Proton selection,
Muon rejection &
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Electron 
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PARTICLE IDENTIFICATION: PHOTONS VS ELECTRONS

• e/γ separation enabled by differences in the start of
the electromagnetic shower.

• Demonstrated using photons from π0 decay [12].

1. dE/dx
2. Detached shower start point
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PARTICLE IDENTIFICATION: PHOTONS VS ELECTRONS

• e/γ separation enabled by differences in the start of
the electromagnetic shower.

• Demonstrated using photons from π0 decay [12].

Boosted decision tree used for shower classification:
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ELECTRON NEUTRINO SELECTION: PROTONS VS MUONS

Cosmic rejection

Fiducial volume &
Electromagnetic

shower

Event selection

Proton selection,
Muon rejection &

π0 tagging

Electron 
identification

Identification the other objects in the event.
Are these tracks protons or muon?
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PARTICLE IDENTIFICATION: PROTONS VS MUONS

Difference in energy losses due to particle mass (Bethe-Bloch)

• Muons: Minimum ionising + short Bragg peak.
• Protons: Heavier and slower→ higher energy losses.
• Detector anisotropies complicate the picture.

Likelihood ratio as test-statistic:

T (dE/dx, segment, θ) = L(muon | dE/dx, segment, θ)
L(proton | dE/dx, segment, θ)

Combines all three wire planes:

L(U, V, Y) = L(U)× L(V)× L(Y)
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νe CC INCLUSIVE EVENT SELECTION

Cosmic rejection

Fiducial volume &
Electromagnetic

shower

Event selection

Proton selection,
Muon rejection &

π0 tagging

Electron 
identification

The final event selection builds on top of
the identification of the different particles in the interactions.
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νe CC INCLUSIVE EVENT SELECTION

• Low electron neutrino purity after pre-selection: O(5%).

• Main backgrounds after pre-selection are muon neutrinos.

• Use gradient boosted decision trees (XGBoost).

• Toughest background to reduce are muon neutrinos with π0 .

Final selection with a νe CC purity of 50%+
and a wide variety of shower energies and vertex multiplicities.
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SELECTION EFFICIENCY AND ELECTRON KINEMATICS

• νe CC efficiency of 18%.
We select events in all three categories, but not tailored for low-energy search.
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SELECTION EFFICIENCY AND ELECTRON KINEMATICS

• νe CC efficiency of 18%.
We select events in all three categories, but not tailored for low-energy search.

• Resolution of electrons kinematics.

Electron energy
reconstructed within ≈20%

≈ 3◦ degree resolution
on the angle with respect to

the beam direction.

Wouter Van De Pontseele 16



SELECTION EFFICIENCY AND ELECTRON KINEMATICS

• νe CC efficiency of 18%.
We select events in all three categories, but not tailored for low-energy search.

• Resolution of electrons kinematics.
• Sideband results. νe-pure high-energy sample demonstrates good agreement
with high statistics. The energy threshold is lowered gradually towards full
unblinding.
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CONCLUSION & NEAR-FUTURE

Electron neutrinos in MicroBooNE
• Fully automatic νe reconstruction and
selection in a LArTPC.

• Shower (e/γ) and track (p/µ)
identification.

• Efficiency of 18% with purity of 50%+
for νe CC interactions.

• Wide variety of final states and
electron kinematics.

More results soon!
• Concurrent effort ongoing with the
NuMI beam [13].

• Progress towards measurements of
the νe content in the BNB beam and
the νe cross-section on Argon.

MICROBOONE-NOTE-1085-PUB
Wouter Van De Pontseele 17
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THANK YOU!
& QUESTIONS
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NEUTRINO OSCILLATIONS: THE CURRENT PICTURE

• Mixing between neutrino flavour and mass eigenstates: PMNS matrixνe
νµ
ντ

 = U(θ12, θ23, θ13, δCP) =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


ν1
ν2
ν3



• Propagation through vacuum over a length L for mass eigenstate νi :

|νi(L)⟩ ≈ e
−i
m2
i L
2E |νi(0)⟩ .

The combination leads to neutrino flavour oscillations!

Wouter Van De Pontseele
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NEUTRINO OSCILLATIONS & THE STERILE NEUTRINO HYPOTHESIS

• Let’s add a sterile fourth neutrino to the game!
νe
νµ
ντ
νS

 =


Ue1 Ue2 Ue3 Ue4
Uµ1 Uµ2 Uµ3 Uµ4
Uτ1 Uτ2 Uτ3 Uτ4
US1 US2 US3 US4




ν1
ν2
ν3
ν4



• Consider experiments where E
L ≈ ∆m2

41 and ∆m2
41 >> ∆m2

21,∆m2
32 .

• If we are only sensitive to electron and muon flavours in the detector:
Ue4 , Uµ4 and∆m2

41

P(νe → νe) = 1− 4(1− | Ue4 |2) | Ue4 |2 sin2(1.27∆m2
41
L
E
) (νe disappearance)

P(νµ → νµ) = 1− 4(1− | Uµ4 |2) | Uµ4 |2 sin2(1.27∆m2
41
L
E
) (νµ disappearance)

P(νµ → νe) = 4 | Ue4 |2| Uµ4 |2 sin2(1.27∆m2
41
L
E
) (νe appearance)

Appearance and disappearance signals are related!
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A PUZZLING COLLECTION OF ANOMALIES

Radiochemical Experiments
• The SAGE and GALLEX experiments both
observed a deficit of electron neutrinos
with radioactive isotope sources.

Reactor Experiments
• 3.5% deficit of electron anti-neutrinos in
several reactor experiments.

Accelerator Experiments
• Excess of electron neutrinos and
anti-neutrinos in the LSND and MiniBooNE
experiments.

Hints towards sterile neutrino,
but tension in global fits remains.
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ANOMALIES IN ACCELERATOR EXPERIMENTS

1. LSND sees ν̄e appearance from a well
understood ν̄µ neutrino source [14].

2. MiniBooNE has different L, E, but similar
L/E ∼ LSND O

(
1mMeV−1).

The MiniBooNE Low-Energy Excess [1]
• In Fermilab’s Booster Neutrino Beam, since 2002.
• Mineral Oil Cherenkov detector.
• Doubled statistics in 2018.
• Excess of events observed, as in LSND.

3. MicroBooNE: same L, E with different
technology.
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A STEP BACK IN TIME: THE LSND EXEPRIMENT

Liquid Scintillator Neutrino Detector at Los Alamos

• Data-taking 1993-1998.
• ν̄µ from µ+ Decay at rest.

• 3.8σ excess consistent with νe
appearance (∆m ≈ 1 eV2).

Wouter Van De Pontseele



PARTICLE IDENTIFICATION IN MINIBOONE

MiniBooNE sees an excess of low energetic electromagnetic events.
No discrimination between a single photon and an electron + insensitive to protons.

The origin of the excess remains unclear.
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LIQUID ARGON TIME PROJECTION CHAMBER
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MICROBOONE DATA EVENT
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TWO POSSIBLE MODELS TO EXPLAIN THE LOW-ENERGY EXCESS

Unfolding the MiniBooNE excess (MICROBOONE-NOTE-1043-PUB)

Electron-like Search
Electron neutrinos from oscillation

Photon-like Search
Neutral current ∆ → Nγ

Wouter Van De Pontseele

http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf


TWO POSSIBLE MODELS TO EXPLAIN THE LOW-ENERGY EXCESS

Unfolding the MiniBooNE excess (MICROBOONE-NOTE-1043-PUB)

Electron-like Search Photon-like Search
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EVENTS CONTAIN A LOT OF COSMIC CHARGE DEPOSITS
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DETECTOR UNDERSTANDING: LAR EVENT RECONSTRUCTION TECHNIQUES

Three different reconstruction approaches in MicroBooNE:

• First time fully automatic event reconstruction used in LArTPC.
• Serve to cross-check each other in parallel efforts.
• Essential build-up of expertise for DUNE, SBND and ICARUS.

WireCell Tomographic Imaging

MICROBOONE-NOTE-1040-PUB

Deep-Learning

Phys. Rev. D 99, 092001 [15]

Pandora Multi-Algorithm

Eur. Phys. J. C. 2019. [8]
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1040-PUB.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://link.springer.com/article/10.1140/epjc/s10052-019-7184-7


CONSTRAINING THE UNCERTAINTIES WITH MUON NEUTRINOS

νµ and νe have much in common:
• Flux: both species of neutrinos come from
the same beam, from decays of the same
populations of hadrons.

• Cross-Section: both neutrinos interact
with argon nuclei.

• Detector: systematic detector effects
affect different channels in the same way.

Strong correlation between the νµ and νe
cross-section at low energies.
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NEUTRINO-ARGON INTERACTIONS: PUBLISHED MICROBOONE RESULTS

First Cross-section results from MicroBooNE
• Using Run 1 data-set, ≈13% of total POT collected.
• Measurement of Inclusive Muon Neutrino Charged-Current
Differential Cross Sections on Argon [2]

• Measurement of νµ Charged-Current π0 Production on
Argon [3]
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MINIBOONE/LSND
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THE SHORT BASELINE PROGRAMME (SBN) AT FERMILAB [4]
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CONSTRAINING THE UNCERTAINTIES WITH MUON NEUTRINOS

νµ and νe have much in common:

• Flux: both species of neutrinos come
from the same beam, from decays of
the same populations of hadrons.

Dominant production modes:
νµ : π+ → µ+νµ 94%
νe : µ+ → e+νeν̄µ 52%

Other sources of systematic uncertainty:
• Cross-Section: both neutrinos interact
with argon nuclei.

• Detector: systematic detector effects
affect different channels in the same
way.
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MUON NEUTRINOS TO CONSTRAIN THE BOOSTER NEUTRINO BEAM FLUX

• νµ flux peaks at ≈0.8 GeV.
• Small νe component: ≈0.57%.

→ νe’s from Kaons at lowest energies can be
constrained by high energy νµ’s.
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