

Measurement of sin²2θ₁₃ via neutron capture on hydrogen at Daya Bay

Jinjing Li

Mail: lijj16@mails.Tsinghua.edu.cn

Tsinghua university

On behalf of the Daya Bay Collaboration

IBD Selection and Backgrounds

- \square Next to 6 × 2.9 GW_{th} reactors providing large flux of $\bar{\nu}_e$
- □ 8 identical-design antineutrino detectors (ADs) deployed in three sites
- \square Inverse Beta Decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$
 - ☐ Prompt signal: kinetic energy of e⁺ and annihilation gammas
 - ☐ Delayed signal: neutron capture gamma

Prompt Delayed Coincidence window

Select IBD with neutron captured on hydrogen (nH)

- ☐ Flasher cut & Muon Veto
- Energy cut: 1.5 MeV < E_p < 12 MeV, μ 3 σ < E_d < μ + 3 σ
- \Box Coincidence time: [1, 400] us
- ☐ Coincidence distance: [0, 500] mm
- \square Multiplicity cut: reject ≥ 3 coincidence

Correlated backgrounds:

- ☐ Muon-induced ⁹Li/ ⁸He:
- ☐ Muon-induced fast-neutron:
- ☐ Am-C calibration source

Accidental background:

two uncorrelated AD events that satisfied the IBD selection criteria

F.P. An et al, Phys. Rev. D 93 (2016) 072011

Efficiencies and AD Identicalness

- ☐ Studies with data
 - ☐ Distance cut
 - ☐ Coincidence time cut
 - ☐ Delayed energy cut
 - ☐ AD-uncorrelated uncertainty were estimated by comparison among 8 ADs.
- ☐ Studies with MC
 - ☐ Prompt energy cut, of which the uncertainty is fully due to the energy-scale variation among 8 ADs.

Uncertainty (%)
0.03
0.13
0.50
0.10
0.14
0.35
0.40
0.57

- ☐ Other IBD selection cuts have negligible uncertainty, such as: multiplicity cut, muon veto, etc.
- ☐ In our last publication, the uncertainty of distance cut and delayed energy cut are dominated in final analysis. New analysis is expected to yield a significant improvement.

Oscillation Analysis Result

$> \chi^2$ function of the rate-only analysis

$$\chi^2 = \sum_{ ext{detector}} rac{\left(ext{Measurement} - ext{Prediction} imes (1 + arepsilon_{ ext{reactor}} + arepsilon_{ ext{efficiency}}
ight) - ext{Background} imes (1 + arepsilon_{ ext{bkg}}))^2}{ ext{Measurement}} + ext{pull terms}$$

- Using 621 days of data, and ~1.0 million antineutrino interactions, we measured that $\sin^2 2\theta_{13} = 0.071 \pm 0.011$.
- Right figure: Measured IBD rate vs. time for each experimental hall (blue points). Each point spans one week.

Towards a Rate & Spectral Shape Measurement

- ☐ Deficit of IBD rate at different neutrino energy range
- ☐ Good understanding of detector energy response

Thank you! Stay tuned~

F.P. An et al, Phys. Rev. D 93 (2016) 072011