Cosmic and atmospheric background stability with (stopping) muons in the SoLid experiment

IBD Interaction

 $\overline{v}_{a} + p \rightarrow e^{+} + n$

Giel Vandierendonck (Giel. Vandierendonck@UGent.be) on behalf of the SoLid collaboration

The SoLid Detector [1]

- 12800 Cubes
 - \circ PVT \rightarrow EMs (e/ γ/μ)
 - \circ ⁶LiF:ZnS(Ag) → neutrons
- 50 Planes
 - 16x16 cubes
 - 64 wavelength shifting fibres
 - Fibres read out with SiPMs
- Detector
 - 5 modules of 10 planes each
 - Cooled to ~10°C

Goals:

- Measure neutrino oscillations at a 5-10m baseline
- Measure ²³⁵U anti-neutrino energy spectrum

Atmospheric Background

- Cosmic particles are the main source of background for reactor neutrino experiments with low overburden
- The IBD selection (S_{Signal BiPo}) is parametrized with the atmospheric pressure
- Subtract reactor on from reactor off to get IBD excess
- Define independent atmospheric selection (S_{atm})
- Ratio between reactor on and off (χ^{S}_{atm}) gives atmospheric asymmetry for each reactor cycle ⇒ excess is stable

Check the stability of the background with muon signals too

Muon Trending

- Follow up muon rate variations during data taking
- Variations due to changes in atmospheric conditions observed
- But, also sudden bursts are observed

- > SoLid detector is perfectly fit for muon tomography
- Use this to find the origin of the muon bursts

- > Direction of the bursts matches with position of the reactor pool
- > Reactor pool is drained multiple times during reactor off period, which results in removal of passive shielding of detector

Stopping Muons

- Muons can stop inside detector after losing their energy
- Decay creates a Michel electron and two neutrinos

$$\mu \rightarrow e + v_e + v_{\mu}$$

- > Due to the track like nature of a Michel electron, it will get reconstructed as a muon
- The time difference between muons will therefore have two contributions:
 - At the milliseconds scale, an exponential for the muon rate
 - At the microseconds scale, an exponential for the muon decay

Decay time in good agreement with literature:

 $\tau = [2.1969811 \pm 0.000002] \mu s$

> Event view of muon decay inside the SoLid detector

Outlook and Conclusions

- Atmospheric background is parametrized with pressure
- Muon trending can identify changes in the reactor pool
- Stability background is ensured by removing data during bursts
- Muons mean energy loss per distance also used for stability [2]
- Stopping muons are well identified in the SoLid detector
- Investigation to probe background stability with stopping muons on going
- arXiv:1703.01683 / arXiv:1806.02461 [2] arXiv:2002.05914