

SoLid

Phase 1 detector

- 12800 Cubes
 - PVT

- \rightarrow EMs (e/ γ/μ)
- $^{\circ}$ 6 LiF:ZnS(Ag) \rightarrow neutrons
- 50 Planes
 - o 16x16 cubes
 - 64 wavelength shifting fibres
 - Fibres read out with SiPMs
- Detector
 - 5 modules of 10 planes each
 - Cooled to 5-10°C
- Goals
 - Measure neutrino oscillations at a 5-10m baseline
 - Measure ²³⁵U anti-neutrino energy spectrum

Analysis

Atmospheric Background

Cosmic particles are the main source of background for reactor

neutrino experiments with low overburden

 The IBD selection (S_{Signal - BiPo}) is parametrized with the atmospheric pressure

Subtract reactor on from reactor off to get IBD excess

- Define independent atmospheric selection (S_{atm})
 Ratio between reactor on and off (χ^{S}_{atm}) gives
- Ratio between reactor on and off (χ^S_{atm}) gives atmospheric asymmetry for each reactor cycle
 ⇒ excess is stable

Stability

Muon Trending

Muon rate variations due to changes in atmospheric conditions

UNIVERSITY

Also sudden bursts are observed

- SoLid detector is perfectly fit for muon tomography
 - o Bursts are due to drainage of reactor pool

