SoLid #### Phase 1 detector - 12800 Cubes - PVT - \rightarrow EMs (e/ γ/μ) - $^{\circ}$ 6 LiF:ZnS(Ag) \rightarrow neutrons - 50 Planes - o 16x16 cubes - 64 wavelength shifting fibres - Fibres read out with SiPMs - Detector - 5 modules of 10 planes each - Cooled to 5-10°C - Goals - Measure neutrino oscillations at a 5-10m baseline - Measure ²³⁵U anti-neutrino energy spectrum # Analysis ## **Atmospheric Background** Cosmic particles are the main source of background for reactor neutrino experiments with low overburden The IBD selection (S_{Signal - BiPo}) is parametrized with the atmospheric pressure Subtract reactor on from reactor off to get IBD excess - Define independent atmospheric selection (S_{atm}) Ratio between reactor on and off (χ^{S}_{atm}) gives - Ratio between reactor on and off (χ^S_{atm}) gives atmospheric asymmetry for each reactor cycle ⇒ excess is stable # Stability ## **Muon Trending** Muon rate variations due to changes in atmospheric conditions UNIVERSITY Also sudden bursts are observed - SoLid detector is perfectly fit for muon tomography - o Bursts are due to drainage of reactor pool