Paleo-detectors for Galactic SN Neutrinos

Patrick Stengel

Stockholm University

July 31, 2020

Craw Klein

1906.05800 [this talk] with S. Baum, T.D.P. Edwards, B.J. Kavanagh, A.K. Drukier, K. Freese, M. Górski and C. Weniger 2004.08394 [atmospheric ν 's] with J.R. Jordan, S. Baum, A. Ferrari, M.C. Marone, P. Sala and J. Spitz

Galactic CC SN ν 's can induce recoils in paleo-detectors

Figure: Supernova simulation after CC

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

Modern TEM allows for accurate characterization of tracks

Paleo-detectors look for damage from recoiling nuclei

Track length from stopping power

$$x_T(E_R) = \int_0^{E_R} dE \left| \frac{dE}{dx_T}(E) \right|^{-1}$$

Cosmogenic backgrounds suppressed in deep boreholes

Figure: ∼ 2Gyr old Halite cores from \sim 3km, as discussed in Blättler+ '18

Depth	Neutron Flux
2 km	$10^6/\mathrm{cm}^2/\mathrm{Gyr}$
5 km	$10^2/\mathrm{cm}^2/\mathrm{Gyr}$
6 km	$10/cm^2/Gyr$
50 m	$70/cm^2/yr$
100 m	$30/\text{cm}^2/\text{yr}$
500 m	$2/cm^2/yr$

Need minerals with low ²³⁸U

- Marine evaporites with $C^{238} \ge 0.01 \text{ ppb}$
- Ultra-basic rocks from mantle, $C^{238} \gtrsim 0.1 \text{ ppb}$

Fast neutrons from SF and (α, n) interactions

SF yields \sim 2 neutrons with \sim MeV

Each neutron will scatter elastically 10-1000 times before moderating

(α, n) rate low, many decay α 's

Heavy targets better for (α, n) and bad for neutron moderation, need H

Solar and atmospheric ν background recoils bracket signal

Track length spectra for detecting galactic CC SN ν 's

Large exposure probes rare events

- NOT background free, but can calibrate radiogenics in the lab
- Spectral information allows for reduction of bkg systematics

- Assume relative uncertainty 1% for normalization of n-bkg
- Solar and atmospheric ν -bkg assume 100% to account for time variation of fluxes

Sensitivity to galactic CC SN rate depends on C^{238}

Epsomite $[Mg(SO_4) \cdot 7(H_2O)]$ Halite [NaCI] Nchwaningite $[Mn_2^{2+}SiO_3(OH)_2 \cdot (H_2O)]$ Olivine $[Mg_{1.6}Fe_{0.4}^{2+}(SiO_4)]$

Probe time averaged or localized star formation history

Feasability of paleo-detectors

- Need model of geological history
- Preliminary mass spec indicates MEs with $C^{238} \leq 0.1 \, \text{ppb}$
- Determine efficiency of effective
 3D recoil track reconstruction

Searches for WIMPs and other ν 's

- Sensitivity to DM potentially competitive with next generation DD experiments
- Could measure evolution of solar/atmospheric ν flux and probe history of sun/cosmic rays

Beyond coherent scattering with atmospheric ν 's (FLUKA)

Background free spectra $x\gtrsim 1\,\mu\mathrm{m}$

- $N \sim 10^4 \; \text{tracks in} \; 100 \, \text{g} \times 1 \, \text{Gyr}$
- Less sensitive to target mineral
- Systematics from atmosphere, magnetic fields under control

Series of halite targets with (M_i, t_i)

- Averaged recoil rate N_i/t_iM_i
- Sensitivity limited by geological history, read-out systematics
- Assume $\Delta_t = 5\%$, $\Delta_M = 1\%$

Fission fragments can be seen by TEM/optical microscopes

Figure: Price+Walker '63

Semi-analytic range calculations and SRIM agree with data

Figure: Wilson, Haggmark+ '76

Cleaving and etching limits ϵ and can only reconstruct 2D

Readout scenarios for different x_T

- HIBM+pulsed laser could read out 10 mg with nm resolution
- SAXs at a synchrotron could resolve 15 nm in 3D for 100 g

Figure: HIM rodent kidney Hill+ '12, SAXs nanoporous glass Holler+ '14

Radiogenic backgrounds from ²³⁸U contamination

$$\begin{array}{c} ^{238}\mathrm{U} \stackrel{\alpha}{\longrightarrow} ^{234}\mathrm{Th} \stackrel{\beta^{-}}{\longrightarrow} ^{234\mathrm{m}}\mathrm{Pa} \stackrel{\beta^{-}}{\longrightarrow} ^{234}\mathrm{U} \stackrel{\alpha}{\longrightarrow} ^{230}\mathrm{Th} \\ \stackrel{\alpha}{\longrightarrow} ^{226}\mathrm{Ra} \stackrel{\alpha}{\longrightarrow} ^{222}\mathrm{Rn} \stackrel{\alpha}{\longrightarrow} \ldots \longrightarrow ^{206}\mathrm{Pb} \end{array}$$

- ullet Reject $\sim 10\,\mu\mathrm{m}~lpha$ tracks
- Without α tracks, filter out monoenergetic ²³⁴Th

Difficult to pick out time evolution of galactic CC SN rate

Coarse grained cumulative time bins

- 10 Epsomite paleo-detectors
- ullet 100 g each, $\Delta t_{
 m age} \simeq 100$ Myr

Determine σ rejecting constant rate

Could only make discrimination at 3σ for $\mathcal{O}(1)$ increase in star formation rate with $C^{238}\lesssim 5\,\mathrm{ppt}$