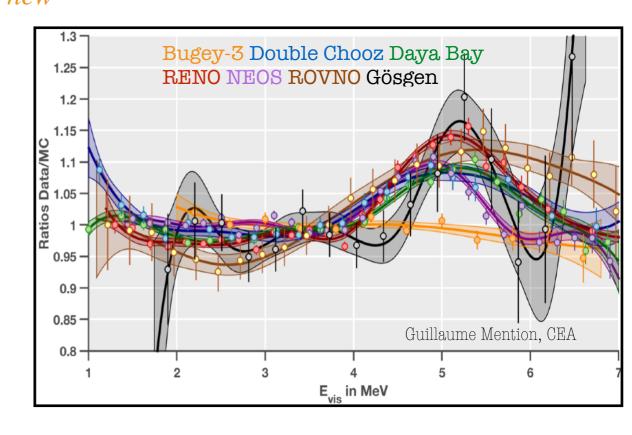


Latest results of the Stereo experiment

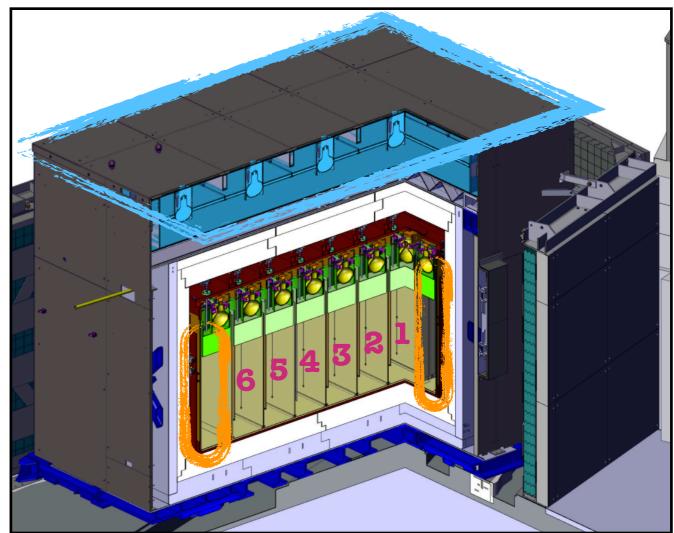
ICHEP 2020 30 - 07 - 2020 Loïc Labit on behalf of the STEREO collaboration

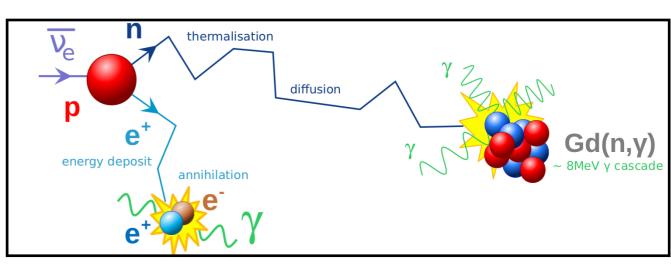


Motivation

- ~10% Energy spectrum distortion around 5 MeV
- \rightarrow underestimation of some isotopes contribution ?
- \rightarrow prediction systematics ?
- \rightarrow detector effects ?

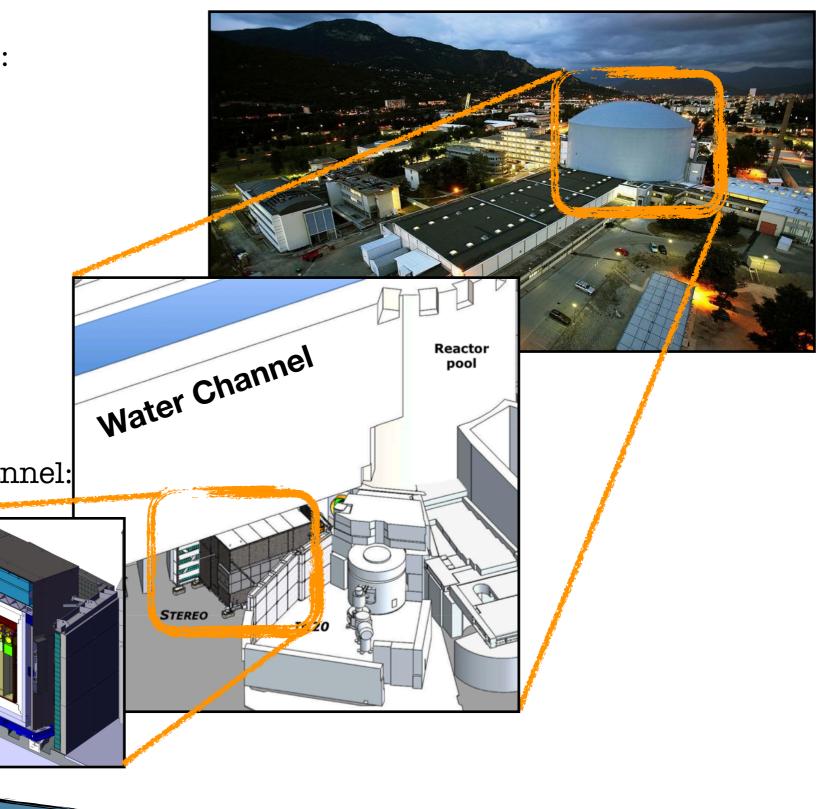
6




Measurement principle

- Detector design:
 - ~2 tons Gd-doped liquid scintillator Target segmented in <mark>6 identical cells</mark>
 - Surrounded by Gamma-catcher (Gd-free liquid scintillator)
 - Surmounted by water Cerenkov muon veto
 - >100 tons of shielding (Pb, polyethylene, B₄C)
- Inverse beta decay (IBD): ν_e + p → e⁺ + n

 prompt: e⁺ ionisation and annihilation


 delayed: n capture on Gd (after ~18 μs)
 gives γ cascade with total energy ~ 8 MeV
 - Fast neutron can mimic IBD signal

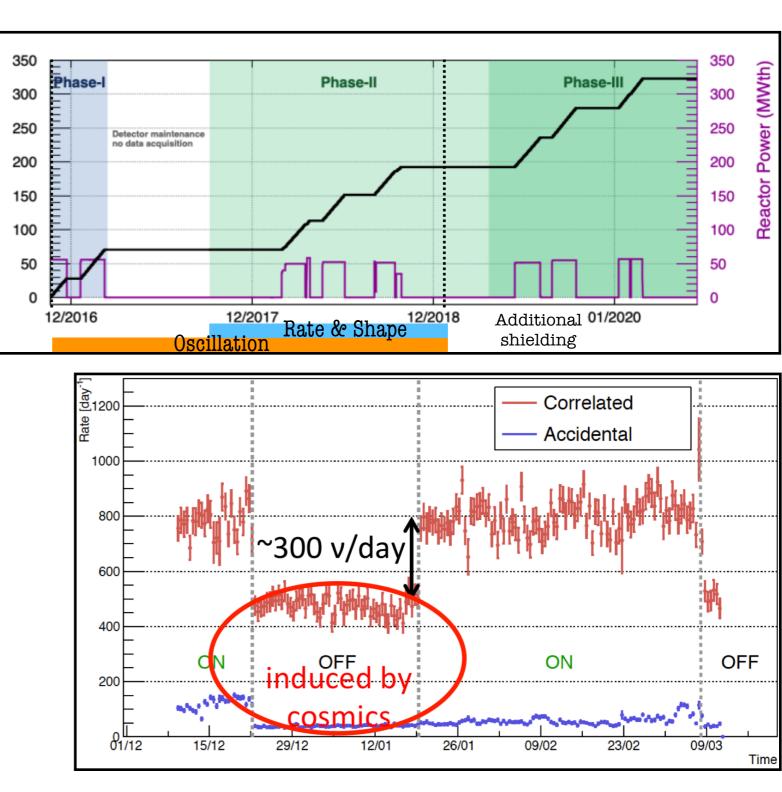
Experiment site

- Institut Laue-Langevin in France (Grenoble)
- Compact research reactor core:
 - $40 \text{ cm} \circ \times 80 \text{ cm}$
 - P_{th}= 58.3 MW
 - highly enriched in ^{235}U (99% of fission events)
- short baseline ~9-11 m
- Surface level experiment: Additional shielding against cosmics provided by water channel: ~15 m.w.e

Data taking

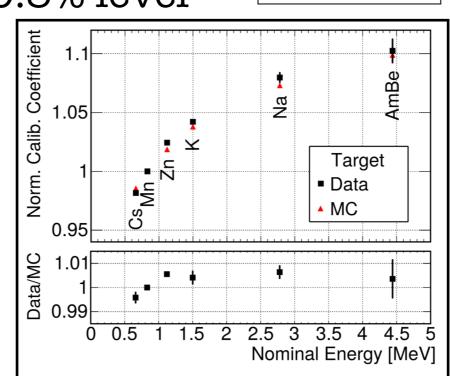
at 58 MWth

Cumulative days

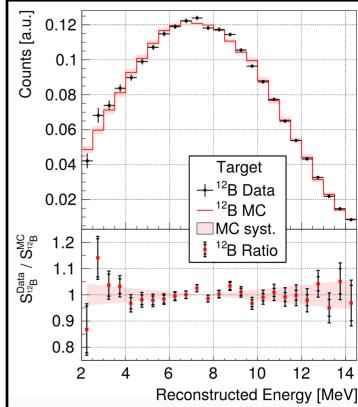

- Data taking started in Nov 2016:
 Phase I + II : 179 days reactor-on 235 days reactor-off
- This talk:

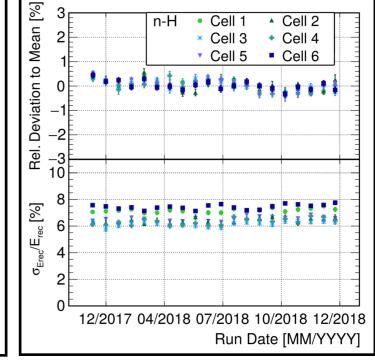
ĥ

→Phase II data (Rate & Shape analysis) →Phase I + II


(Oscillation analysis)

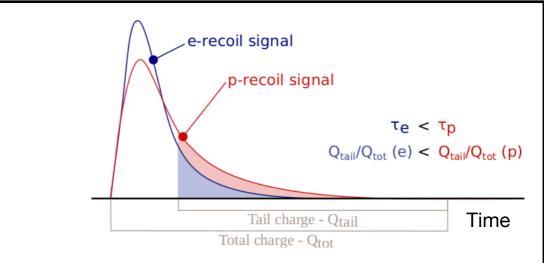
- Reactor-off data critical for background subtraction
- Data acquisition expected to continue until end of 2020

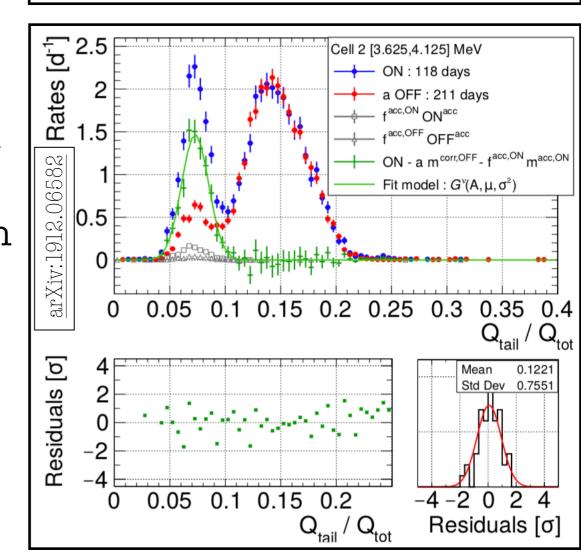



Detector control

- Energy calibration:
 - weekly ^{54}Mn ($\gamma \text{-}0.83 \mathrm{MeV}),$ monthly AmBe calibrations
 - Other γ sources: 0.5 4.4 MeV
 - cosmogenic ${}^{12}B$ spectrum
- Time stability monitored with n-H cap<u>ture:</u>
 - mean energy stable at 0.3% level
- Non-linearity:
 - Mn anchor of energy scale
 - Data/MC agreement better than 1%

arXiv:1912.06582




Neutrino signal extraction

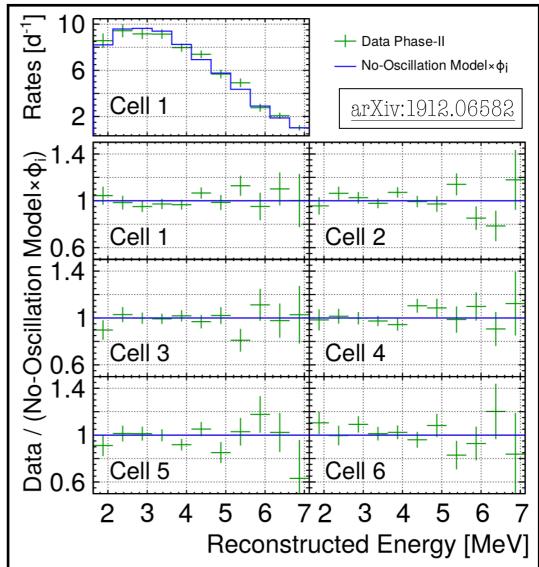
- Pulse Shape Discrimination (PSD):
 - Q_{tail}/Q_{tot}
 - electronic recoils have low Q_{tail}/Q_{tot}
 - proton recoils have large Q_{tail}/Q_{tot}
- PSD model:

$$\begin{split} & ON_{l,i,p} = a_{l,i} \times m_{l,i,p}^{corr,OFF} + f^{acc,ON} \times m_{l,i,p}^{acc,ON} + G_p^{\nu}(A_{l,i}, \mu_{l,i}, \sigma_{l,i}^2) \\ & OFF_{l,i,p} = m_{l,i,p}^{corr,OFF} + f^{acc,OFF} \times m_{l,i,p}^{acc,OFF} \end{split}$$

- $a_{l,i}$ normalisation param. between ON and OFF for cell l and energy bin i- accidentals measured with high stat. from
- shifted time windows
- neutrino: gaussian function
- Simultaneous fit of OFF and ON PSD spectra

Oscillation analysis

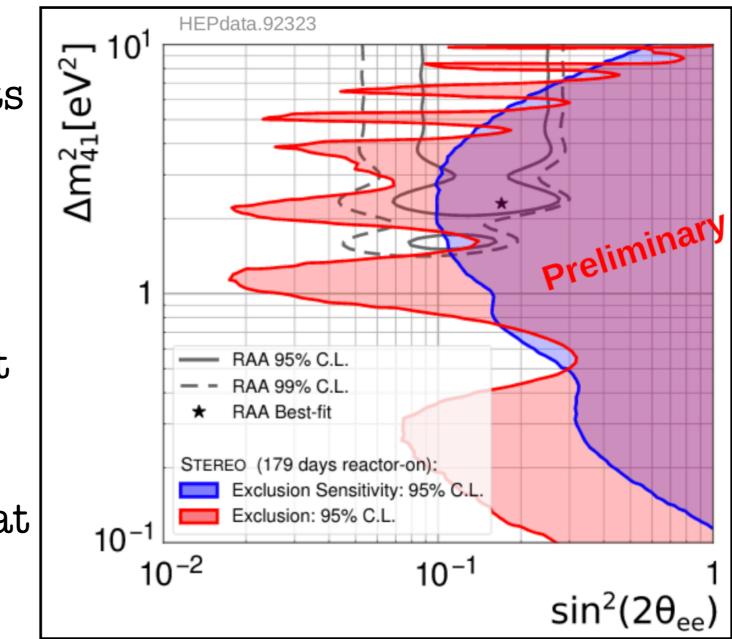
- Spectrum shape only analysis, no information from absolute rate
- Comparison between cells and energy bins independent from prediction:


$$\chi^{2} = \sum_{l}^{N_{Cells}} \sum_{i}^{N_{Ebins}} \left(\frac{D_{l,i} - \phi_{i} M_{l,i}(\mu, \sigma, \overrightarrow{\alpha})}{\sigma_{l,i}} \right)^{2} + \sum_{l}^{N_{Cells}} \left(\frac{\alpha_{l}^{NormU}}{\sigma_{l}^{NormU}} \right)^{2} + \left(\frac{\alpha_{l}^{EScaleC}}{\sigma_{l}^{EScaleC}} \right)^{2} + \left(\frac{\alpha_{l}^{EScaleU}}{\sigma_{l}^{EScaleU}} \right)^{2}$$

- Each energy bin normalised by param. ϕ_i common to all cells:

 \rightarrow analysis independent from absolute rate \rightarrow analysis independent from predicted spectrum

• Systematic uncertainties parameterised by nuisance parameters $\overrightarrow{\alpha}$


8

Type	Relat. uncert.
Normalisation (uncorrelated)	
Cell volume	0.83%
Neutron efficiency correction	0.84%
Energy scale (uncorrelated)	
Mn anchor point	0.2%
Cell-to-cell deviations	1.0%
Energy scale (correlated)	
Time stability	0.3%

Oscillation analysis results

- $\Delta \chi^2$ distributions obtained from MC pseudo-experiments
- Contour obtained from 2-dimensional $\Delta \chi^2$ map
- No-oscillation hypothesis not rejected (p-value = 0.09)
- RAA best fit point excluded at more than 99.9% C.L.

Absolute rate measurement

	~			1 I								
Quantity	Symbol	Value	Uncert./ $\%$]			1 1 1
Number of ν /fission	$N_{\nu}^{[2,8]\mathrm{MeV}}$	1.846	2.40									mod
Huber prediction		1.722	2.40		Nucifer						1.014	+ 0
Correction factors		1.072	0.10		7.2 m					-	1.014	⊥ v .
Number of fissions/day		$1.30 \cdot 10^{23}$	1.44		ILL 8.8 m	⊢ ▲					0.792	± 0.
Thermal power	$\langle P_{\rm th} \rangle$	$49.2\mathrm{MW}$	1.44		SRP-I				1		0.941	+ 0.
Energy/fission	$\langle E_f \rangle$	$203.4{\rm MeV}$	0.13		18.2 m				1		0.541	± 0.
Fract. of interacting ν	$ au_{ m int}$	$8.10 \cdot 10^{-21}$	0.56		SRP-II 23.8 m				*		1.006	± 0.
Solid angle			0.50		Krasnoyarsk-	87	⊢				0.925	+ 0
IBD cross-section	$\sigma_{ m IBD}$		0.22		33.0 m	00					0.525	- v .
MC statistics	-		0.12		Krasnoyarsk-9 34.0 m	99		HA I			0.946	± 0.
Correc. of p -number	$c_p^{ m Data/MC}$	0.983	1.00		Krasnoyarsk-	94	F				0.936	+ 0
Detection efficiency	$\epsilon_{ m d}$	0.2049	0.54		57.3 m	07					0.330	± v .
Selection cuts			0.41		Krasnoyarsk-8 92.3 m	8/ H		-			0.942	± 0.
Energy Scale			0.30		STEREO						0.948	+ 0
MC statistics			0.19		9.4 - 11.2 m			11			0.340	÷ 0.
Correc. of delayed effi.	$c_n^{ m Data/MC}$	0.9774	0.86		New average	(pure ²³⁵ U)		-			0.950	± 0.
Predicted IBD yield		$383.7\mathrm{d}^{-1}$	$2.10 \oplus 2.40$		DB+RENO (23	³⁵ U, no osc)					0.923	+ 0
Observed IBD yield		$363.8\mathrm{d}^{-1}$	$0.88 \oplus 1.06$		PRD 99, 073005	(2019)					0.525	÷ 0.
Statistics			0.88						i			
ν extrac. method			0.65		0.6 0	.7 0.8	0.	9	1	1.1	1.2	
Reactor-induced bkg.			0.83						ed /			
Off-time method			0.14		arXiv:200	14.0407	<u>0 </u> R		/ ~	R ^{Predicte}	~	

Observed neutrino rate: 364 ± 3 stat. ± 4 syst. $\rightarrow \frac{R_{obs}}{R} = 0.948 \pm 0.024$

lel uncertainty

135

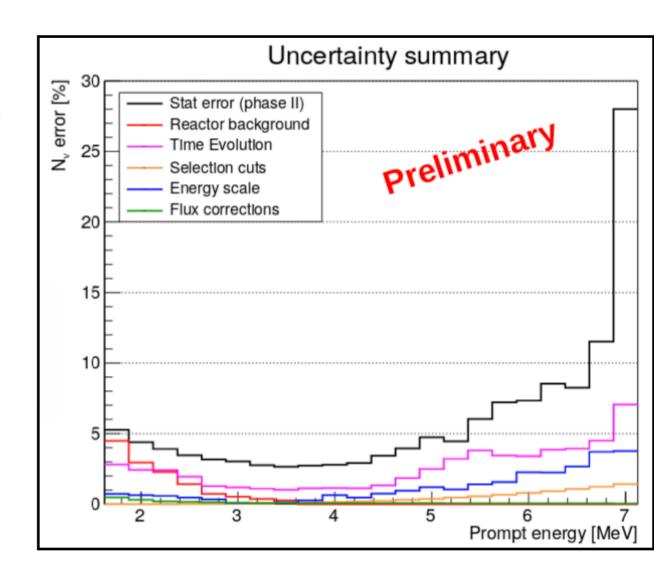
HEP 06 (2017)

experimental

1.4

- in agreement with current world average
- Main uncertainties are thermal power, proton number & neutron efficiency
- Among the most precise measurement for pure ^{235}U fuel

Spectrum shape unfolding


• Prompt energy spectrum D_i unfolded in antineutrino energy spectrum ϕ_j thanks to response matrix R_{ij} :

$$\rightarrow \chi^2(\overrightarrow{\alpha}, \overrightarrow{\phi}) = \sum_i \left(\frac{D_i - \sum_j \phi_j R_{ij}(\overrightarrow{\alpha})}{\sigma_i} \right)^2 + \sum_{s \in syst.} \frac{\alpha_s}{\sigma_s} + r \Lambda(\overrightarrow{\phi})^2$$

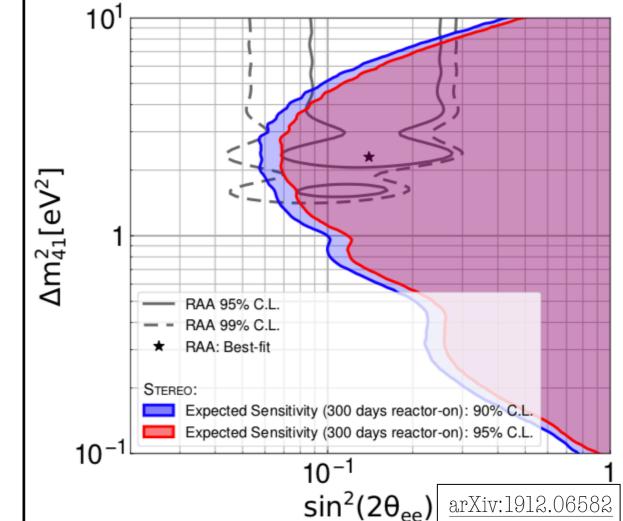

- Main uncertainty is statistic
- Regularisation term to smooth unfolding of statistical fluctuations:

$$\Lambda(\overrightarrow{\phi}) = \left(\sum_{i} \frac{\phi_{i+1}}{\phi_{i+1}^{0}} - \frac{\phi_{i}}{\phi_{i}^{0}}\right)^{2}$$

$$\overrightarrow{\phi^{0}} \text{ prior spectrum: Huber's }^{235}U \text{ spectrum}$$

• Regularisation strength *r* chosen to minimise dependence to prior spectrum

Unfolding results



• Hint of a spectral distortion, fit with a free gaussian: \rightarrow Amplitude = 10.1± 2.9% Mean = 4.8±0.2 MeV in prompt space 12 Preliminary Mean = 4.8±0.2 MeV

Conclusion & Outlook

- Large portion of the RAA parameter space excluded, in particular RAA best fit point excluded at more than 99.9% C.L.
- Absolute rate measurement for pure ${}^{235}U$ among world-wide leading measurements, consistent with the RAA deficit 10^{1}
- Spectral shape in neutrino energy space:

 Hint of a ~10% spectral distortion
 at ~5 MeV in prompt space with respect to
 Huber-Mueller predicted spectrum
- Further data taking until the end of the year:
 - \rightarrow expected more than 300 days reactor ON
 - \rightarrow 2× more statistics
- Stay tuned for PROSPECT and STEREO joint spectrum analysis !

- Recent STEREO papers :
- Oscillation: <u>arXiv:1912.06582</u>
- Absolute Rate: <u>arXiv:2004.04075</u>
- Gd improved cascade: <u>Eur.Phys.J.A 55 (2019) 10, 183</u>

The STEREO collaboration

14

Spokesperson: David Lhuillier (CEA) Contact: David.Lhuillier@cea.fr Website: www.stereo-experiment.org

Thank you for your attention !

Neutron efficiency

Cell 4

AmBe Data

AmBe MC

- Neutron efficiency (delayed trigger): dominant uncertainty
- Studied with AmBe γ -n source (mimics IBD)
- Remaining discrepancy at corner position corrected by 3D-model

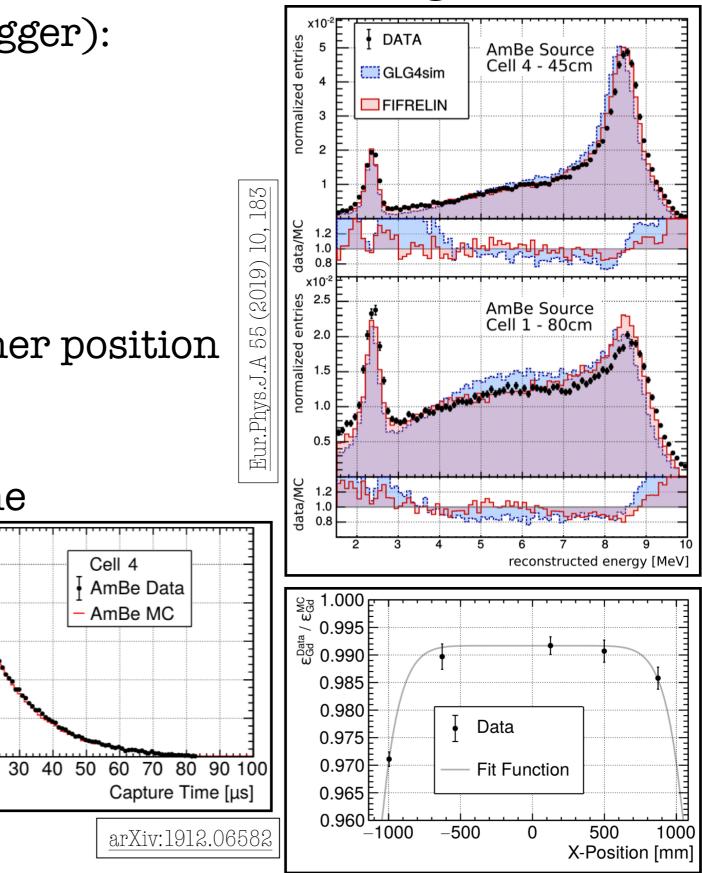
Counts [a.

50

40

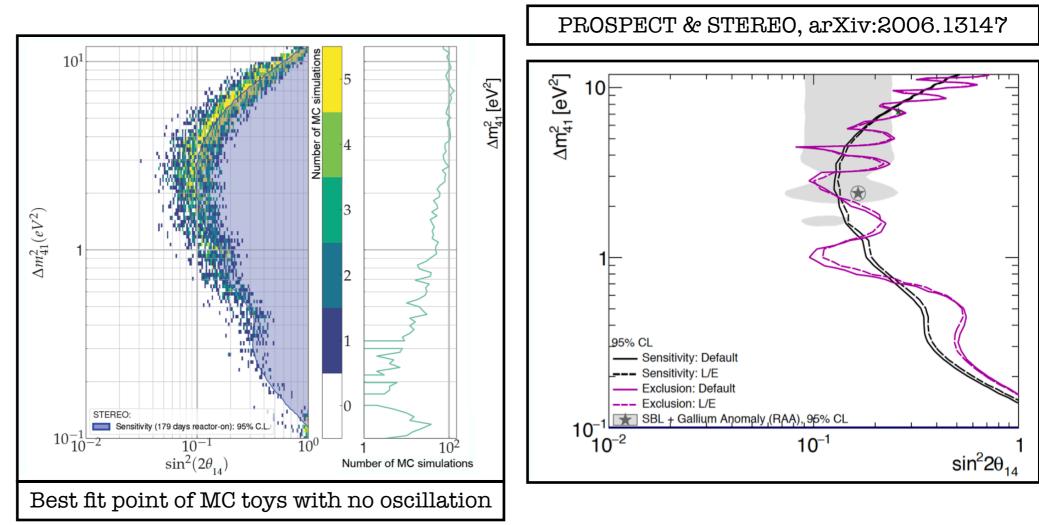
30

20


10

0

20


10

Good agreement in capture time

Important aspects to consider in oscillation measurement

- Statistical method: frequentist test necessary $\rightarrow \chi^2$ of best fit non-zero even for no-oscillation
- Consider position and time dependent variation of energy response

• Exclusion and sensitivity curves similar for L/E and (E,L) bins