

Search for Type-III SeeSaw heavy leptons in dilepton final states using 139 fb⁻¹ of pp collision at \sqrt{s} = 13 TeV with the ATLAS detector

ICHEP 2020

28 July - 6 August 2020

Giuseppe Carratta

On behalf of the ATLAS Collaboration

Introduction

The discovery of neutrino flavour oscillations implies non-null masses for neutrinos.

Explanation for mass of neutrinos requires an extension of the originally formulated Standard Model.

Fig.1 Branching ratios of the charged components. Continuous lines for decay into Z, dashed into W, dotdashed into $H^{[2]}$. It is the same for the neutral component.

Type-III SeeSaw^[1] mechanism extends the SM, introducing two heavy Dirac charged leptons and a heavy Majorana neutral lepton, that couple to electroweak gauge bosons and generate neutrino masses through Yukawa couplings to the Higgs boson and neutrinos.

Final states include:

- 2 leptons with opposite- (OS) or same-sign (SS)
- 2 neutrinos providing large E_T^{miss} missing transverse energy
- 2 jets

Fig.2 Final state with OS leptons

^[1] R. Foot, H. Lew, X. G. He and G. C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys.C44(1989) 441

^[2] C. Biggio and F. Bonnet, Implementation of the Type III Seesaw Model in FeynRules/MadGraph and Prospects for Discovery with Early LHC Data, Eur. Phys. J.C72(2012) 1899, arXiv:1107.3463 [hep-ph]

Analysis strategy

To perform this search, different **analysis regions**^[3] are defined:

- Control Regions (CR): estimate tt and diboson contributions
- Validation Regions (VR): validate background estimation method
- Signal Regions (SR): enriched in signal events

Fig.3 Distributions of $H_T + E_{T}^{miss}$ in SS (left) and OS (right) SRs for the electron-muon channel.

	OS $(\ell^+\ell^- = e^+e^-, e^{\pm}\mu^{\mp}, \mu^+\mu^-)$			$SS (\ell^{\pm}\ell^{\pm} = e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm})$		
	Top CR	m_{jj} VR	SR	Diboson CR	m_{jj} VR	SR
N(jet)	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2
$N(b ext{-jet})$	≥ 2	0	0	0	0	0
m_{jj} [GeV]	(60, 100)	$(35,60) \cup (100,125)$	(60, 100)	$(0,60) \cup (100,300)$	$(0,60) \cup (100,300)$	(60, 100)
$m_{\ell\ell}$ [GeV]	≥ 110	≥ 110	≥ 110	≥ 100	≥ 100	≥ 100
$\mathrm{Sig}(E_{\mathrm{T}}^{\mathrm{miss}})$	≥ 5	≥ 10	≥ 10	≥ 5	≥ 5	≥ 7.5
$\Delta\phi(E_{ m T}^{ m miss},l)_{ m min}$			≥ 1			
$p_{\mathrm{T}}(jj)$ [GeV]			≥ 100			≥ 60
$p_{\mathrm{T}}(\ell\ell)$ [GeV]			≥ 100			≥ 100
$\star H_{\rm T} + E_{\rm T}^{\rm miss}$ [GeV]	≥ 300	≥ 300	≥ 300	(300, 500)	≥ 500	≥ 300

Table 1 Summary of the analysis regions definition.

* H_T is the scalar sum of the transverse momenta of selected objects

These analysis regions have different background contribution:

- **Prompt background leptons** are estimated using Monte Carlo samples and are originating from decays of Z, W, H bosons, or from prompt leptonic τ decays
- Charge mis-identification is corrected by a charge-flip scale factor derived from a data and MC comparison
- **Fake leptons** are originated from in-flight decays of mesons (non-prompt leptons), jets reconstructed as leptons and photon converting into electron-positron pair

[3] ATLAS Collaboration, Search for type-III seesaw heavy leptons in dilepton final states with a \sqrt{s} = 13 Tev with the ATLAS Detector, EXOT-2018-33

Results

Fig.4 Number of observed and expected events in each analysis regions.

Main contribution to uncertainties:

Experimental: object calibration and efficiencies

Luminosity: 2% for ATLAS measurements in Run-2

Theory: QCD scales, PDF choice, parton shower parameters, as uncertainties

Fakes: data-driven background modelling

Normalisation fit: fitted tt and diboson contribution

Fig.5 Relative uncertainties in the total background yield estimation after fit.

All the **six SRs** are combined in the fit.

No excess with respect the SM is found. Then, a lower limit on the heavy lepton mass at 95% of Confidence Level is set:

Fig.6 Heavy lepton mass exclusion limit.