MUSiC: Model Unspecific Search in CMS RWTHACHEN

Lorenzo Vigilante on behalf of the CMS Collaboration

ICHEP 2020 Conference

MOTIVATION

- Search for new physics phenomena.
- Search in multiple diverse final states.

selected

Events

event classes

1e2µ+

lely

- No specific input of any particular new physics model.
- Search for deviations from the Standard Model (SM) only hypothesis.
- Complementary approach to dedicated analyses.

CMS

exclusive

inclusive

distributions

search

algorithm

(kinematic)

Data

SM expectation

Region of Interest

Prevent possible detectable signs of new physics from being overlooked: models with no dedicated analyses, unconsidered new physics phenomena.

SENSITIVITY STUDIES

Two different approaches used to demonstrate capability of the analysis to identify deviations in the comparison between data and simulation.

Inject a BSM signal

- W' simulated samples are added on top of SM processes.
- Different final states (e.g. $1\mu + p_T^{miss}$)

0

Physics

SPONSORED BY THE

Federal Ministry

of Education

and Research

Institute III A

MUSIC IN A NUTSHELL

Event selection

- Use CMS data and simulation of SM background from O(100) processes.
- Event and object selection based only on reconstruction quality.

Classification

- Sort simulation and data into event classes (final states).
- Consider three distributions per event class: $S_T = \sum |p_T|$, invariant mass (M) and p_T^{miss} .

Scan

- Find region with most significant deviation.
- Determine p-value with look-elsewhere correction (\tilde{p}) .

EVENT SELECTION

- Use proton collision data collected by CMS in 2016 (35.9 fb⁻¹) with $\sqrt{s} = 13 \ TeV$.
- Physics objects considered : electrons (e), muons (μ), photons (γ), jets, b-jets and missing transverse momentum (p_T^{miss}).

with significant deviations beyond the expectation are found.

Remove a SM signal

- WZ process is removed from SM background.
- Scan against recorded CMS data.
- Several final states (e.g. $3\mu + p_T^{miss}$) show large and significant deviations.

10^{-1} 10^{-2} 0^{-2} 500 1000 1500 2000 2500 3000 3500 4000 M_T Invariant mass with the additional W' signal.

RESULTS

Total yield scans and object group representation

- Evaluate p-value for each event class based on total yield.
- Event classes grouped by their object content
 e.g. 2e object group consists of all classes with
 exactly two electrons and any number of (b-)jets.

Number of event classes	
Exclusive	498
Inclusive	571
Jet- inclusive	530

Scan final states containing at least one lepton (electron or muon).

CLASSIFICATION

- Determine event class based on well reconstructed objects in an event.
- Sort event into exactly one "exclusive" event class.
- Sort event also into several "inclusive" and "jet-inclusive" event classes.
- Determine systematic uncertainties in an automated way.

SCAN

Scan for deviation between data and SM simulation in different event classes. Scan for deviations in kinematic distributions (S_T, M, p_T^{miss}) : Region of Interest (RoI) scan along with total event yield.

- Consider all connected bin regions.
- Region of Interest (RoI) is defined as the region with the smallest p-value.

No particular event class being found to have a very significant deviation.

2e object group representation.

Results of Rol scan

- Distributions of S_T , M, and missing p_T are scanned to search for deviations.
- Due the large number of different event classes a global overview of the scan is required.
- \tilde{p} -values calculated for each kinematic distribution are summarized in a single

Invariant mass distribution for 2μ class.

Significance calculation and correction of Look-Elsewhere effect

Use Gaussian prior to model systematic uncertainties on the mean of the Poisson counting experiment.

$$p_{\text{data}} = \begin{cases} \sum_{i=N_{\text{data}}}^{\infty} C \cdot \int_{0}^{\infty} d\lambda \exp\left(-\frac{(\lambda - N_{\text{SM}})^2}{2\sigma_{\text{SM}}^2}\right) \cdot \frac{e^{-\lambda} \lambda^i}{i!} & \text{if } N_{\text{data}} \ge N_{\text{SM}} \\ \sum_{i=0}^{N_{\text{data}}} C \int_{0}^{\infty} d\lambda \exp\left(-\frac{(\lambda - N_{\text{SM}})^2}{2\sigma_{\text{SM}}^2}\right) \cdot \frac{e^{-\lambda} \lambda^i}{i!} & \text{if } N_{\text{data}} < N_{\text{SM}}, \end{cases}$$

ICHEP 2020 | PRAGUE

N_{SM}: Sum of weighted MC event in region.

N_{data}: sum of data events in region.

 $\sigma_{SM} = \sqrt{\sigma_{MC,stat}^2 + \sigma_{MC,sys}^2}$

- Significance for Rol is overestimated due the large number of considered regions.
- Use pseudo-experiments to correct for look-elsewhere effect.

- histogram and compared with SM only expectation obtained from pseudo experiments.
- No event classes with an outstanding deviation have been found.
- Largest deviations are along expectation within uncertainties from SM only hypothesis.

REFERENCES

CMS-PAS-EXO-19-008

vigilante@physik.rwth-aachen.de