MUSiC: Model Unspecific Search in CMS

Lorenzo Vigilante on behalf of the CMS Collaboration

ICHEP 2020 Conference

July 29th, 2020

MUSiC in a nutshell

Features:

CMS-PAS EXO-19-008

- Search for deviations from Standard Model (SM) expectation in hundreds of different final states.
- No specific input of any particular new physics model.
- Complementary approach to dedicated analyses.
- Sensitive to new physics model for which no dedicated analysis exists, or unconsidered new physics phenomena.

Analysis:

- 1) Use proton collision data collected by CMS in 2016 (35.9 fb⁻¹) with \sqrt{s} =13 TeV.
- 2) Well reconstructed physics objects (e, μ , γ , jets, b-jets, p_T^{miss}) are considered.
- 3) Sort events into different event classes (final states) based on event content: exclusive, inclusive and jet-inclusive.
- 4) Scan kinematic distributions (Invariant Mass (M), S_T, p_T^{miss}) for discrepancies between data and simulation.
- 5) Identify regions with significant deviation.

RoI scan and sensitivity studies

Regions building and RoI scan:

CMS-PAS EXO-19-008

- Scan for deviation in kinematic distribution in different event classes.
- ➤ Define p-value to describe the agreement between simulation and data.
- Consider all possible bin regions and define the Region of Interest (RoI) as the region with smallest p-value.
- ➤ Use pseudo-experiments to correct for look-elsewhere effect.

Sensitivity studies:

- Demonstrate capability of the analysis to identify deviation.
- W' simulated samples are added on top of SM processes. Different final states with significant deviations beyond expectation are found.

Results

CMS-PAS EXO-19-008

Total yield scans:

- The MUSiC algorithm has identified 498 exclusive event classes and 571 (530) inclusive (jet-inclusive) event classes with at least one data event.
- First: evaluate p-value for each event class based on total yield.
- Then event classes grouped by their object content e.g. 2e object group consists of all classes with exactly two electrons and any number of (b-)jets.
- ➤ No particular event class being found to have a very significant deviation.

Global overview:

- Due to the large number of different event classes a global overview of the scan is required.
- \tilde{p} -values calculated for each kinematic distribution are summarized in a single histogram and compared with SM only expectation obtained from pseudo experiments.
- Largest deviations are along expectation based on the SM only hypothesis, within uncertainties.

