Is Lepton Flavour Universality Violation a hint on nonunitary New Physics Couplings?

Jonathan Kriewald

Laboratoire de Physique de Clermont-Ferrand

Motivation

Recent data from LHCb, Belle (and BaBar) experiments suggest violation of Lepton Flavour Universality (LFU).

The ratios (to reduce theoretical uncertainties)

$$\boldsymbol{R_{D^{(\ast)}}} = \frac{\mathrm{BR}(B \to D^{(\ast)} \tau \nu)}{\mathrm{BR}(B \to D^{(\ast)} \ell \nu)} \text{, } \boldsymbol{R_{K^{(\ast)}}} = \frac{\mathrm{BR}(B \to K^{(\ast)} \mu \mu)}{\mathrm{BR}(B \to K^{(\ast)} e e)}$$

show tensions with the Standard Model (SM) predictions:

$$R_{K[1.1,6]} = 0.846 \pm_{0.054}^{0.060} \pm_{0.014}^{0.016}, \qquad R_{K}^{\mathsf{SM}} = 1.0003 \pm 0.0001 \qquad (2.5\sigma)$$

$$R_{K^{*}[1.1,6]} = 0.69_{-0.07}^{+0.11} \pm 0.05, \qquad R_{K^{*}[1.1,6]}^{\mathsf{SM}} \sim 0.99 \qquad (2.6\sigma)$$

$$R_{D} = 0.340 \pm 0.027 \pm 0.013, \qquad R_{D}^{\mathsf{SM}} = 0.299 \pm 0.003 \qquad (1.4\sigma)$$

$$R_{D^{*}} = 0.295 \pm 0.011 \pm 0.008, \qquad R_{D^{*}}^{\mathsf{SM}} = 0.258 \pm 0.005 \qquad (2.5\sigma)$$

Many solutions have been proposed!

Effective Field Theory:

- ► Model independent fit
- correlations between observables $\sim \rightarrow$
- \Rightarrow Identify viable SM extensions to explain LFUV

An appealing candidate: Leptoquarks!

-0.8

ICHEP 2020 | PRAGUE

Results

- **Tightest constraints** on parameter space from combination of **LFV processes**: $K_L \to e^{\pm} \mu^{\mp}, \ (\mu - e) \text{ conversion and } \ell \to \ell' \gamma$
 - \Rightarrow n = 1 VL (heavy) leptons: excluded by flavour observables \checkmark
 - \Rightarrow Consider n = 3 generations of VL leptons!

Effective coupling matrix is highly nonunitary !

Depending on $SU(2)_L$ representation of VL leptons (isosinglets vs isodoublets): \Rightarrow Potential modification of $Z - \ell - \ell$ couplings

Single mediator solution to both $R_{K^{(*)}} \& R_{D^{(*)}} \rightsquigarrow V_1 \sim (3, 1, -\frac{2}{3})$

-0.2 $\Delta C_{0}^{bs\mu\mu} = -\Delta C_{10}^{bs\mu\mu}$

★ Leptoquarks (LQ): scalar or vector bosons coupling leptons to quarks

Setup: vector leptoquark V_1

Consider a new massive gauge boson V_1 , naturally embedded in $SU(4)_C$. Gauge couplings are strictly **universal**; how to explain LFU violation?

 \blacktriangleright Only V_1 with a universal gauge coupling cannot explain the data... (And data strongly favours nonuniversal LQ couplings!)

⇒ **Nonuniversal** couplings needed! How can this be achieved?

- \blacktriangleright Add *n* vector-like (VL) leptons mixing with (left-handed) SM leptons
- \Rightarrow effective LQ-q- ℓ couplings $K_L^{q\ell}$
- parametrised via non-unitary matrix (from mixing with heavy states)
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients:

 $C_{9,10}^{ij;\ell\ell'} = \mp \frac{\pi}{\sqrt{2}G_F \alpha V_{3i} V_{2i}^*} \frac{1}{m_U^2} K_L^{i\ell'} K_L^{j\ell*}$

Phenomenological Constraints

Excessive contributions to $\Gamma(Z \to \ell \ell)$ and $\Gamma(Z \to \ell \ell')$

(B) Heavy vector-like $SU(2)_L$ -doublets:

• Compatible (3σ) with $R_{D^{(*)}}$ • Compatible with *Z*-decays \Rightarrow **Nonunitarity** driven by $R_{D^{(*)}}$ ⇒ Full parameter space **excluded** by Z- and/or LFV constraints! XX

- Compatible (3σ) with $R_{D^{(*)}}$ & $R_{K^{(*)}}$
- Compatible with LFV bounds and $R_{D^{(*)}}$ & $R_{K^{(*)}}$ at $1\sigma!$
- ⇒ Future LFV experiments (e.g. COMET, MU2E) will probe most of the parameter space!

 \Rightarrow recover universality of $Z - \ell - \ell$ couplings \Rightarrow Explain $R_{K^{(*)}}$, $R_{D^{(*)}}$ & comply with all **phenomenological constraints** \checkmark

- $\Gamma(Z \to \mu \mu) / \Gamma(Z \to ee), \dots$
- Further constraints: $B_s \rightarrow \mu^+ \mu^-$, ...
- **Collider searches:** ATLAS and CMS (LHC)

Tight constraints on free parameters: • LQ mass: $R_{D^{(*)}} \Rightarrow m_U \sim 1.5 - 3 \text{ TeV}$

 \circ 3+? mixing angles and 1+? phases, depending on number of VL generations

References

[1] C. Hati, JK, J. Orloff, A. M. Teixeira: [JHEP12(2019)006].

Conclusions $SU(2)_L$ -singlet vector leptoquark: successful single mediator solution to accommodate both *B***-meson decay** anomalies Account for $R_{K^{(*)}} \& R_{D^{(*)}}$ (i) (ii) Comply with bounds on **LFV** \Rightarrow **nonunitary** couplings to SM fermions (source of **nonuniversal** Z **decays!**) The results of our study [1] allow to: - falsify classes of UV-complete frameworks

 V_1 + a single heavy vector-like lepton generation \checkmark $V_1 + n \ge 2$ generations of $SU(2)_L$ -singlet heavy vector-like leptons \checkmark - identify viable scenarios to explain $R_{K^{(*)}} \& R_{D^{(*)}}$ $V_1 + n \ge 2 SU(2)_L$ -doublet heavy VL leptons, in agreement with <u>all constraints !!!</u> \checkmark \checkmark

http://clrwww.in2p3.fr/

ICHEP 2020 28.07. - 06.08. 2020

jonathan.kriewald@clermont.in2p3.fr