Fast neutrino flavor conversion at late time

Soumya Bhattacharyya

Department Of Theoretical Physics, TIFR soumyaquanta@gmail.com

Background and Objectives

- High neutrino density inside supernovae allows self-interaction of strength $\mu \gg \lambda$ (matter potential), ω (vacuum scale)
- Such conditions favor fast flavor conversions (FFC) : 1) Rapid and occurs at a rate μ 2) Can give rise to complete flavor conversion 3) System gets coupled and also nonlinear
- Linear stability analysis [1] was done in previous literatures : Helpful to understand if or when FFC occurs but fails to study the impact of FFC on the observable neutrino fuxes or explosion mechanism
- Our motivation : Understanding the nonlinear mechanism of FFC both numerically and analytically considering a system of inhomogeneous and non-stationary dense neutrino gas with 1 (space) +1 (momentum) +1 (time) phase space dimensionality

Equation of Motion for FFC in 1+1+1 D [2, 3]

- Developed our own faster numerical strategy to solve the EOM.
- Discretized in space for each velocity v to solve a sef of couped nonlinear O.D.E as á function of t .
- Method : B.D.F Boundary Condition : Periodic in space
- Solver : Zvode and scipy.fftpack.diff in python

Results

- System becomes approximately stationary in time allowing -
us to drop the time index from the quantities in the EOM.
- In the stationary limit the polaization vectors for each velocity mode show a precession in space around a common axis , M_{\sim}, in some rotated frame. "~" sign denotes the quantities in that frame
- In the same frame \mathbf{M}_{0} has a spatial motion equivalent to the motion of a pendulum $[4,5]$ in a inhomogeneous magnetic field B with fixed spin (σ), fixed energy (E) and fixed length M_{0}

$\widetilde{\mathbf{M}}_{0}: \widetilde{\mathbf{M}}_{0} \times \frac{d^{2}}{d x^{2}} \widetilde{\mathbf{M}}_{0}+\sigma\left|\widetilde{\mathbf{M}}_{0}\right| \frac{d}{d x} \widetilde{\mathbf{M}}_{0}=\left|\widetilde{\mathbf{M}}_{0}\right|^{2} \widetilde{\mathbf{B}} \times \widetilde{\mathbf{M}}_{0}$
$E=\widetilde{\mathbf{B}} . \widetilde{\mathbf{M}}_{0}+\frac{1}{2} \tilde{\mathbf{D}} . \tilde{\mathbf{D}} \quad \sigma=\widetilde{\mathbf{D}} . \widetilde{\mathbf{M}}_{0} \quad\left|\widetilde{\mathbf{M}}_{0}\right|=$ const $\quad \widetilde{\mathbf{D}}=\sum_{n=o d d} \alpha_{n} \widetilde{\mathbf{M}}_{n}, \widetilde{\mathbf{B}}=\sum_{n=e v e n} \beta_{n} \widetilde{\mathbf{M}}_{n}$

[1] PhysRevD. 84.053013 (2011) [2] JCAP 03, 042 (2016)
[3] JCAP 02, 019 (2017) [3] JCAP 02, 019 (2017)
[4] Phys. Rev.D 74, 105010 (2006)
[5] Phys. Rev. D 101,043009 (2020)
- The phase relationship between the transverse components of the polarization vector in the $e^{1}-e^{2}$ plane behaves like a uniform random distribution in space between $[-\pi, \pi]$ at late times $[9]$
- This is true for any specific velocity mode and any value of the lepton asymmetry A .

- The spattrally avergeed ($\langle\ldots$.$\rangle) polarization vectors exhibit complete (partial)$ decoherence for zero (non zero) lepton àsymmetry at late times. [6, 7] - For partial decoherence the vanishing range of velocity modes loosely depends on the occurrence of the sign-fip of the e^{3} component of the corotating Hamiltonian! The condition for the sign flip for a specific v : [9] $\left(\alpha\left(t_{\text {ini }}\right) A+v B\left(t_{\text {ini }}\right)\right)\left(\alpha\left(t_{f i n}\right) A+v B\left(t_{f i n}\right)\right)<0 \quad A=\left.\int_{-1}^{1}\left\langle P_{v}^{(3)}\right\rangle\right|_{t=0} d v \quad\left\langle\mathrm{M}_{1}^{(3)}\right\rangle=B(t)$ - $\alpha(\mathrm{t})$. is the component of $<\mathrm{H}_{\mathrm{v}}^{3}>$ parallel to $\left\langle\mathrm{M}_{0}^{3}\right\rangle$ in the corotating
frame.
- This kinematic decoherence stems from randomization of the transverse ${ }_{7}$ components of the polarization vectors.

- The stationary solution of the late time EOM is non-separable in $x \& v$ implying a non-collective behaviour [8] for FFC at late time.
- This can be checked numerically through a qauantity defined as

$\left.14 \sqrt{R_{v_{1}, v_{2}}^{i}(x)=\frac{P_{v_{1}}^{i}(x)}{P_{v_{2}}^{i}(x)}}\right|_{t=50} \quad i=1,2,3$

- Separable solution in $\times \& v$ in the stationary limit will imply no spatial dependence for the above quantity. But the numerical simulation shows a large variation in space for the above quantity implying a non-separable large variation in space for the above quantity implying a non-separable
solution in \dot{x} \& v . This is true for any velocity pair with any value of A at late

