MANCHESTER 1824

The University of Manchester

LHCb highlights

Silvia Borghi

On behalf of the LHCb Collaboration

ICHEP 2020 | PRAGUE

VIRTUAL CONFERENCE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

Detector and performance in Run 1 and Run 2

LHCD

- Forward spectrometer with an acceptance 2<η<5</p>
- Trigger: low level trigger and 2 stages of software trigger

JINST 14 (2019) P11023, JINST 14 (2019) P04013, Int. J. Mod. Phys. A 30 (2015) 1530022, JINST 3 (2008) S08005

Detector and performance in Run 1 and Run 2

Tracking system performance:

- track reconstruction efficiency: ~ 96 %
- momentum resolution: Δp/p=0.5 %
- impact parameter resolution: (15 +29/p_T[GeV]) μm
- decay time resolution: ~45 fs for $B_s \rightarrow J/\psi \phi$

for ~ 5 % e→h mis-id probability

Exotic Spectroscopy

Exotic spectroscopy

- Exotic states: beyond conventional mesons $(q\overline{q})$ and baryons (qqq)
 - Provide new insights into internal structure and dynamics of hadrons
 - A good platform to study non-perturbative behavior of QCD

- ► the first observed charmonium-like exotic hadron (<u>Belle 2003</u>) with most abundant experimental information
- ▶ Intriguing properties, e.g. mass extremely close to $D^0\overline{D}^{*0}$ threshold
- Nature still unclear: conventional $\chi_{c1}(2^3P_1)$, $D^0\overline{D}^{*0}$ molecular state, tetraquark, $c\overline{c}g$ hybrid, vector glueball, or mixed?

Study of $\chi_{c1}(3872)$

▶ 2 independent measurements assuming Breit-Wigner lineshape

$$m(\mathbf{\chi}_{c1}(3872)) = 3871.64 \pm 0.06 \pm 0.01 \text{ MeV/c}^2$$

LHCb average

$$\Gamma(\chi_{c1}(3872)) = 1.19 \pm 0.19 \text{ MeV/c}^2$$

$$\delta E = m \left(\chi_{c1}(3872) \right) - m(D^0 \overline{D}^{*0}) = 0.07 \pm 0.12 \text{ MeV/c}^2$$

- ightharpoonup First width measurement and most precise measurement of mass and $\delta \mathrm{E}$
- Proximity to D⁰D^{*0} threshold distorts the lineshape from a BW: alternative fit using a Flatté parametrization [PRD 76 (2007) 034007, PRD 80 (2009) 074004]

Mean: $3871.69^{+0.00+0.05}_{-0.04-0.13} \text{ MeV}/c^2$; FWHM: $0.22^{+0.06+0.25}_{-0.08-0.17} \text{ MeV}/c^2$

- ⇒ Need physically well-motivated lineshape parametrization
- Study about its nature
 - Consistent with D^0D^{*0} quasi-bound state with $E_b < 100$ keV at 90% C.L.
 - Quasi-virtual state cannot be excluded

arXiv: 2005.13419 arXiv: 2005.13422 **LHC**

 $m_{D^0} + m_{D^{*0}}$ PDG 2018

CDF $p\overline{p} \rightarrow \chi_{c1}(3872)X$

Belle $B \rightarrow \chi_{e1}(3872)K$

LHCb pp $\rightarrow \chi_{e1}(3872)X$

BES III $e^+e^- \rightarrow \chi_{e1}(3872)\gamma$

BaBar B⁺ $\rightarrow \chi_{c1}(3872)$ K⁺

BaBar B⁰ $\rightarrow \chi_{c1}(3872)$ K⁰ BaBar B $\rightarrow (\chi_{c1}(3872) \rightarrow J/\psi \omega)$ K

 $D0~p\overline{p}\!\to\chi_{c1}(3872)X$

 $m_{\chi_{c1}(3872)}$ [MeV/ c^2]

LHCb $B^+ \rightarrow \chi_{c1}(3872)K^+$

LHCb b $\rightarrow \chi_{c1}(3872)X$

Belle $B \rightarrow \chi_{c1}(3872)K$

BES III $e^+e^- \rightarrow \chi_{c1}(3872)\gamma$

BaBar B $\rightarrow \chi_{c1}(3872)$ K

BaBar B $\rightarrow \chi_{c1}(3872)$ K

Need additional measurements to increase our understanding

Observation of structure in the J/ψ -pair mass spectrum

- Existence of T_{OOOO} states (Q= c or b) is expected by many QCD models
 - No observed exotic states with more than 2 heavy quarks
- ightharpoonup The four charm-state, $T_{cc\bar{c}c}$
 - predicted to have a mass between 5.8 and 7.4 GeV/c²
 - can decay into a pair of charmonia => search in J/ψ pair mass spectrum

- ► J/ψ pair production
 - single parton scattering process includes resonant production via intermediate states, e.g. $T_{cc\bar{c}\bar{c}}$
 - Double parton scattering process: two J/ψ produced independently

arXiv:2006.16957

Observation of structure in the J/ψ -pair mass spectrum

- A narrow peaking structure at ~6.9 GeV/c² matching the lineshape of a resonance
- A broader structure close to threshold
- Inconsistent in the 6.2-7.4 GeV/c² mass region with non-resonant SPS + DPS only hypothesis by >5 σ
- The structure at 6.9 GeV/ c^2 consistent with $T_{cc\bar{c}\bar{c}}$ predicted in various tetraquark models.
- Describing the X(6900) structure with a Breit-Wigner lineshape

$$m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\text{MeV},$

Other models considered and confirmed the resonance

More data needed to gain more insight into the observed resonance

Measurement of the CKM angle γ

10

Measurement of the CKM angle γ

LHCb-CONF-2020-001

Sensitivity to γ from b \rightarrow u and b \rightarrow c interference

The case of the CKM angle
$$\gamma (= \phi_3)$$
 [CKMFitter]

$$\gamma_{\rm direct} = 72.1^{+5.4}_{-5.7}^{\circ}$$

$$\frac{?}{=} \gamma_{\text{indirect}} = 65.66^{+0.90}_{-2.65}^{\circ}$$

Measurement CPV observables in the decays channels $B^{\pm} \rightarrow D^{0}K^{\pm}$ and $B^{\pm} \rightarrow D^{0}\pi^{\pm}$ (with $D^{0} \rightarrow K^{0}{}_{s}\pi^{+}\pi^{-}$ or $D^{0} \rightarrow K^{0}{}_{s}K^{+}K^{-}$) using the model-independent approach

$$N_{\pm i}^- \propto F_{\pm i} + (x_-^2 + y_-^2) F_{\mp i} + 2 \sqrt{F_i F_{-i}} (x_- c_{\pm i} + y_- s_{\pm i})$$

$$r_B \exp[i(\delta_B \pm \gamma)] = x_{\pm} + iy_{\pm}$$

- ▶ Update using the full statistics: $\mathcal{L} = 9 \text{ fb}^{-1}$
- Systematic uncertainties significantly reduced due to new control and updated strong-phase inputs from BESIII [arXiv:2003.00091]
- ► This measurements is **consistent with indirect measurements**
- \triangleright This is the best stand-alone measurement of γ to date

Constraints from "tree-level" observables

Results in terms of γ and CP conserving phase difference

Anomalies in Electroweak Penguin Decays

12

Anomalies in $b \rightarrow s \ell^+ \ell^-$ transitions

LHCD

- FCNC forbidden at tree-level in the SM
- Sensitive to NP in loops:
 - modifying the decay rate
 - changes the angular distribution of final state particles
- ► Anomalies observed in different measurements
 - Decay rates are consistently lower than SM in b→sµ⁺µ⁻ decays:
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^0 \mu^+ \mu^-$ and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ JHEP 06 (2014) 133
 - $B^0 \rightarrow \phi \mu^+ \mu^-$: <u>JHEP 09 (2015) 179</u>
 - $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: <u>JHEP 06 (2015) 115</u>
 - \circ B⁰ \to K*⁰ $\mu^+\mu^-$: <u>JHEP 11 (2016) 047</u>
 - Ratio of decay rate to different lepton flavours:
 - ∘ R_{K*}: <u>JHEP 1708 (2017) 055</u>;
 - o R_K: <u>PRL 122 (2019) 191801;</u>
 - o R_{pk}: <u>JHEP 05 (2020) 040</u>
 - Angular observables as function of q²
 - o JHEP 02 (2016) 104,
 - PRL125(2020) 011802

Lepton universality

Measurement of the ratio of the decay rates
$$R_{H_s} = rac{\int_{q_{\min}^2}^{q_{\max}^2} rac{d\Gamma(H_b o H_s \mu^+ \mu^-)}{dq^2} \, dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} rac{d\Gamma(H_b o H_s e^+ e^-)}{dq^2} \, dq^2}$$

- Evaluation of the double ratio to suppress detector effects
- $R_K(B^+ \rightarrow K^- \ell^+ \ell^-)$ and $R_{K^*}(B^0 \rightarrow K^* \ell^+ \ell^-)$ compatible at 2-2.5 σ with the SM
- R_{pK} for $\Lambda^0_b \rightarrow pK^-\ell^+\ell^-$ is the first test of LU with b baryons

$$R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

JHEP 05 (2020) 040

LHCb [JHEP 08 (2017) 055] [PRL 122 (2019) 191801]; BaBar [PRD86 (2012) 032012] Belle [arXiv:1904.02440] [arXiv:1908.01848],

 $R_K = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis Phys. Rev. Lett. 125, 011802 (2020)

- Study the differential decay rate described by q² and 3 decay angles to evaluate:
 - S_i are the CP-averaged observables
 - A_{FR} is the forward backward asymmetry of the dimuon system
 - F_L is the fraction of longitudinal polarisation of the K*0
- P_i parameters optimized to reduce the theory uncertainties [JHEP 05 (2013) 137]

$$\Rightarrow P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

- Update of previous measurement [JHEP 02 (2016) 104]
- Observables consistent with SM, largest tension from S₅
- P'₅ has a local **discrepancy** in two bins

$$4.0 < q^2 < 6.0 \text{ GeV}^2/c^4$$
: Run1 + 2016: 2.5 σ $6.0 < q^2 < 8.0 \text{ GeV}^2/c^4$: Run1 + 2016: 2.9 σ

→ Local tension in P'₅ still present

DHMV: [JHEP 12 (2014) 125], [JHEP 09 (2010) 089]

B⁰→K*⁰µ⁺µ⁻ angular analysis

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{\rm tb} V_{\rm ts}^* \frac{e^2}{16\pi^2} \sum_i \mathcal{C}_i \mathcal{O}_i$$
 Wilson coefficient ("effective coupling")

varying only $Re(C_9)$ and $Re(C_{10})$:

 2.8σ from SM

varying only Re(C_9): 3.3 σ from SM

2016 data set is shown for illustrative purposes: not coverage- and bias-corrected, and not including systematic uncertainties.

Rare decays

ICHEP 2020, 03/08/2020 1

B⁰→K*⁰e+e⁻ angular analysis

- Photon polarisation predominately left handed in the SM
- BSM in the loop can contribute a right-handed current
- $B^0 \rightarrow K^{*0}e^+e^-$ decay dominated by $b \rightarrow s\gamma$ at very-low q^2
- Extract photon polarization by angular analysis at very-low q²

Sensitivity to γ polarisation:

$$A_T^{(2)}(q^2 \to 0) = \frac{2\mathcal{R}e\left(\mathcal{C}_7\mathcal{C}_7^{'*}\right)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2}$$
 They vanish for purely left-handed polarisation
$$A_T^{lm}(q^2 \to 0) = \frac{2\mathcal{I}m\left(\mathcal{C}_7\mathcal{C}_7^{'*}\right)}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2}$$

- Update of Run 1 analysis [JHEP 04 (2015) 064]
- Results $(0.0008 < q^2 < 0.257 \text{ GeV}^2/c^4)$

- Consistent at 0.3σ with SM predictions
- Statistically limited measurements

LHCb-PAPER-2020-020 in preparation

Dominating the sensitivity to right-handed coupling C'₇

Upgrade

Upgrade for Run 3 data taking

- ► Run at 2×10³³ cm⁻¹ s⁻¹ with ~5 visible interaction
- Expected to collect about 50 fb⁻¹ in Run3 and Run 4 2010
- 40 MHz readout of all sub-detectors
- Major upgrade of the detector:
 - New flexible fully-software trigger
 - Hybrid trigger technology: GPU in the first high level trigger stage (HLT1) and CPU in second high level trigger stage (HLT2)
 - Real-time alignment and calibration before HL2
 - Run the full reconstruction in HLT2
 - New tracking system
 - Upgrade of PID subdetectors
 - Significant progress made by all sub-detectors

Upgrade

Upgrade

Installation and commissioning impacted by Covid-19

RICH A-Side

UT: silicon strip

> Turning on PEPI electronics on UT slice test

SciFi tracker

Moving C-Frame 1 from assembly to transport cage

10m

Muon System: Upgr Muon chambers M4 M5

Installation of HCAL Beam Plug

RICH:

New Readout and photon detectors for RICH2

ECAL: Reduced PMT gain and new electronics

20m

- Challenge:
 - Improve even more LHCb precision: measurements statistical limited even after Run 4
 - Fully exploit HL-LHC
- Plan to record more than 300 fb⁻¹
 - L=1.5 × 10^{34} cm⁻²s⁻¹ and μ ~45
 - ⇒ Include timing information for tracking and particle ID
- Many interesting opportunities for detector R&D for LS4, interested groups welcome to contact us:
 - E.g. precision timing in vertexing, Cherenkov detectors, calorimetry and CMOS for tracking
- ▶ Strong support from European Strategy for Particle Physics

Eol [CERN-LHCC-2017-003]
Physics case [arXiv:1808.08865]
Framework TDR expected 2021

Conclusion

LHCD

- New results in several areas:
 - Exotic Spectroscopy: observed resonance at 6.9 Ge/ c^2 consistent with $T_{cc\bar{c}\bar{c}}$ prediction
 - Searches for NP: anomalies persist in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays
 - Precision measurements of CKM: most precise measurement of γ
 - and many others...
- ▶ Many results in the pipeline with the full Run 1 and Run 2 data sample
- Upgrade for Run 3 data taking
 - Major upgrade of the detector ongoing
 - flexible fully-software trigger
- Foreseen Upgrade II for Run 5 to fully exploit HL-LHC

More exciting results are to come!

Discussion panel at 14h on 04/08 with Sneha Malde Apologize, I cannot make it

Backup

25

Detector and performance

Collected Integrated luminosity in Run1 + Run2: ~9 fb⁻¹

BF of $b \rightarrow s \mu^+ \mu^-$

Phys. Rev. Lett. 124 (2020) 211802

Search for $B^0_{(s)} \rightarrow e^+ e^-$

- ► SM predicts BF is 10⁻¹⁴ and 10⁻¹⁵. NP prediction up to 10⁻⁸ and 10⁻¹⁰ [JHEP 05 (2017) 156, JHEP 10 (2019) 232]
- \Rightarrow any signal would be a sign of NP.
- New limits with O(10) times improvements
 - $\mathcal{B}(B^0_s \to e^+e^-) < 9.4 (11.2) \times 10^{-9} \text{ at } 90 (95) \% \text{ CL}$
 - $\mathcal{B}(B^0 \rightarrow e^+e^-)$ < 2.5 (3.0)×10⁻⁹ at 90 (95) % CL

on <u>EP</u>	0.1	$\begin{array}{c c} 2017 \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2020 LHCb
	10 ⁻⁷	SM Y	<u> </u>
	10-10	2019 LHC & SM Univ New F Scen	Physics
	10 ⁻¹³		SM
	10-16	$\overline{\mathcal{B}}(B_s \to \tau^+ \tau^-) \qquad \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-) \qquad \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)$	$\rightarrow e^+e^-)$

√s (TeV)	£ (fb ⁻¹)
7	1
8	2
13	2

Lepton universality in $\Lambda^0_h \rightarrow pK^-\ell^+\ell^-$

- Evaluation of the double ratio to suppress detector effects

$$R_{pK} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

- Compatible with previous R_H measurements and with unity
- This is the first test of lepton universality with b baryons

LS2 Master Schedule V2.7 approved on 12th June 2020

ACC-PM-MS-0002 v.2.7 EDMS: 1687788

Update on the re-start plan Frédérick Bordry 29th June 2020

23