COSMOLOGY IN THE 2020s

David Kirkby
University of California, Irvine, USA
4 August 2020

microwave projects: cosmic microwave background (primordial gravity waves, neutrinos, ...)

optical & NIR projects: galaxy surveys (dark energy, neutrinos, ...)

telescope location: ground / above atmosphere

CMB ground telescope location: Atacama desert / South Pole

Galaxy survey instrument: spectrograph / imager

EXPANSION HISTORY VS STRUCTURE GROWTH

Measurements of our cosmic expansion history constrain the parameters of an expanding homogenous universe:

Small inhomogeneities are growing against this backdrop. Measurements of this structure growth provide complementary constraints.

CMB measures initial conditions of structure growth at $z\sim1090$:

CMB photons

also experience

weak lensing!

CMB: INFLATION ERA SIGNATURES

Lensing B modes already observed.

Next target:

B modes from primordial gravity waves.

Key parameter:

r = tensor / scalar fluctuations

CMB: INFLATION ERA SIGNATURES

Forecast sensitivity to r

https://arxiv.org/abs/1907.04473

Lensing B modes already observed.

Next target:

B modes from primordial gravity waves.

Key parameter:

r = tensor / scalar fluctuations

CMB: SEARCH FOR LIGHT RELIC PARTICLES

Measure gravitational effects of radiation fluid, including relativistic particles produced in thermal equilibrium.

Expect $N_{\rm eff} \sim 3$ from SM neutrinos.

Deviations ΔN_{eff} are signature of new light particles.

CMB+GALAXIES: SUM OF NEUTRINO MASSES

SM neutrinos are relativistic in early universe (CMB), then non-relativistic (matter like) in the late universe (DE).

The transition between these regimes is sensitive to $M_{\nu} = \sum m_{\nu}$

eBOSS: Alam et al (July 2020)

Forecast: CMB-S4 + Rubin Obs

SOME (MILD) TENSIONS WHEN EXTRAPOLATING FROM CMB

NEW RESULTS ON H₀ TENSION

tension is $2-3 \sigma$

NEW RESULTS ON THE S₈ TENSION

eBOSS(SDSS): Alam et al (July 2020)

https://arxiv.org/abs/2007.08991

KiDS-1000: Heymans et al (July 2020)

https://arxiv.org/abs/2007.15632

tension is 2-3 σ

GALAXIES: DARK ENERGY EVOLUTION

 10^{-7} $w(a) = w_0 + w_a(1-a)$ 10^{-8} Energy Density (J/m3) $w_0 = -0.9$ 10^{-9} $w_0 = -1.1$ 10^{-10} 10^{-11} 10^{-12} 0.15 0.20 0.30 0.50 0.70 1.00 Expansion Scale Factor a = 1/(1+z)

GALAXIES: DARK ENERGY EVOLUTION

GALAXIES: NEW RESULTS ON DARK ENERGY

$$w(a) = w_0 + w_a(1-a)$$

eBOSS(SDSS): Alam et al (July 2020)
https://arxiv.org/abs/2007.08991

GALAXIES: DARK ENERGY FORECASTS

expect percent-level test of w_0 =-1 during 2020s

$$w(a) = w_0 + w_a(1-a)$$

https://arxiv.org/abs/1611.00036

DESI forecast

Vera Rubin Obs (DESC) forecast

https://arxiv.org/abs/1809.01669

GALAXIES: DARK ENERGY FORECASTING GUIDE

 $w(a) = w_0 + w_a(1-a)$

Contour in (w_0, w_a) translates to a sensitivity curve:

COSMOLOGY TRENDS FOR THE 2020S

Our ability to constrain cosmological parameters is increasingly limited by systematic uncertainties.

Our community is adopting many of the same mitigation strategies as HEP:

- ➤ fewer & larger collaborations
- joint analysis between experiments
 (cross correlations & joint pixel-level data processing)
- adoption of blind analysis methods
- exploration of machine-learning algorithms

BACKUP SLIDES

The optical sky is a data cube: $\theta \times \varphi \times r$

Galaxy survey imaging, e.g. Vera Rubin Observatory

Galaxy survey spectroscopy, e.g. DESI