

Wave-like Dark Matter and Axions

ICHEP Plenary Talk
August 04 2020
Chelsea Bartram
University of Washington

Axions and wave-like dark matter

Indirect astrophysical observations indicate 85% of the total matter composition of the universe is unknown!

Dark Matter thought to be:

- Cold (non-relativistic)
- Feebly (non) interacting
- Very stable
- Non-baryonic

What is wave-like dark matter?

$$a(\vec{x},t) = \frac{\sqrt{(2\rho_{DM})}}{m_a} \cos(m_a t + \mathcal{O}(\nu_{DM})\vec{x})$$

ρ_{DM}: dark matter density

ma: axion mass

Calculate de Broglie wavelength of axions:

$$\lambda \approx \frac{2\pi}{mv} \approx 100 \text{s of m}$$

Wavelength of the Conversion Photon: ~meter

"The axion had been declared invisible", says theorist Pierre Sikivie. "[I said], let me just calculate how invisible they truly are."

https://spectrum.ieee.org/aerospace/astrophysics/the-hunt-for-the-invisible-axion

Axions: Good Multi-Taskers Solve two problems at once!

Ok, maybe three...

What solves What particle **Axions** is dark the Strong **CP Problem?** matter? Why I love my job?

Axions and Strong CP Problem

Strong Interactions -should- violate CP due to term in QCD Lagrangian

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

CP-violation in strong interactions ———— Neutron EDM

- New limit on neutron EDM published this year!
- After many years searching: Still no neutron EDM!

$$d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} e \cdot {\rm cm}$$

C. Abel et al.

Phys. Rev. Lett. 124, 081803 — Published 28 February 2020

Axions and Strong CP Problem

$$L_{\theta} = \frac{g^2}{32\pi^2} \theta_{QCD} F_a^{\mu\nu} \tilde{F}_{\mu\nu a}$$

Roberto Peccei 1942-2020

• Peccei-Quinn Solution to Strong CP Problem: Θ is now a dynamical variable which relaxes to zero at critical temperature.

 PQ Mechanism predicts a pseudo scalar boson which is the axion! (Weinberg, Wilçek)

Theoretical Constraints

Lower bound set by size of dark matter halo size of dwarf galaxies

Upper bound set by SN1987A and white dwarf cooling time

Pre-inflation PQ phase transition

←

Post-inflation PQ phase transition

PDG https://arxiv.org/pdf/1710.05413.pdf

Adaptation of L. Winslow DPF Slide

Types of Axions

QCD axion:

- 1-100 µeV
- Two classes of models:

- KSVZ (Kim-Shifman-Vainshtein-Zakharov):
 - couples to leptons
 - $g_{Y}=0.97$
- DFSZ (Dine-Fischler-Srednicki-Zhitnitsky):

9

- couples to quarks and leptons
- $g_Y = 0.36$

Detection Methods Depend on Axion Interactions

Adapted from L. Winslow DPF slide and Y. Kahn, See Graham and Rajendran, Phys.Rev. D88 (2013) 035023

CASPEr-electric

Dielectric Haloscopes MADMAX, Orpheus

Coupling to photons

Helioscopes **CAST, IAXO Dish Antennas BRASS**

Coupling to nucleon EDM

ARIADNE

LUX

XENON1T

QUAX

Coupling to axion nuclear moment

Coupling to axial

electric moment

Dielectric Haloscopes MADMAX, Orpheus

Coupling to photons

Haloscopes
ADMX
Haystac
CAPP-8TB

Helioscopes CAST, IAXO Dish Antennas BRASS

CASPEr-electric

Coupling to nucleon EDM

ARIADNE

CASPEr-wind

Coupling to axion nuclear moment

Torsion Experiments

QUAX

XENON1T

Coupling to axial electric moment

Dielectric Haloscopes MADMAX, Orpheus

Coupling to photons

Haloscopes
ADMX
Haystac
CAPP-8TB

Helioscopes CAST, IAXO Dish Antennas BRASS

CASPEr-electric

Coupling to nucleon EDM

ARIADNE

CASPEr-wind

Coupling to axion nuclear moment

Torsion Experiments

QUAX H

XENON1T

Coupling to axial electric moment

Dielectric Haloscopes MADMAX, Orpheus

Coupling to photons

Haloscopes
ADMX
Haystac
CAPP-8TB

Helioscopes CAST, IAXO Dish Antennas BRASS

CASPEr-electric

Coupling to nucleon EDM

ARIADNE

CASPEr-wind

Coupling to axion nuclear moment

Torsion Experiments

QUAX

XENON1T

Coupling to axial electric moment

Quantum Computing

Cryogenics

Microwave Electronics

High Magnetic Fields

Axion-like Particles Exclusion Plot

Axion Haloscopes

All use microwave cavity in magnetic field

Relies on inverse Primakoff effect and resonant enhancement of cavity

Scan Rate: Figure of Merit for Haloscope Search

$$\frac{\mathrm{df}}{\mathrm{dt}} \approx 1.68 \frac{\mathrm{GHz}}{\mathrm{yr}} \left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{\mathrm{f}}{1 \mathrm{~GHz}}\right)^2 \left(\frac{\rho_o}{0.45 \mathrm{~GeV/cc}}\right)^2 \left(\frac{5}{\mathrm{SNR}}\right)^2 \left(\frac{\mathrm{B}_0}{8}\right)^4 \left(\frac{\mathrm{V}}{100 \mathrm{~l}}\right)^2 \left(\frac{\mathrm{Q_L}}{10^5}\right) \left(\frac{\mathrm{C}_{010}}{0.5}\right)^2 \left(\frac{0.2}{\mathrm{T}_{\mathrm{sys}}}\right)^2$$

Maximize

- B Field
- Volume
- Quality Factor
- Form Factor

Can't Control

- Frequency
- Coupling
- Dark Matter Density

- Minimize
- System noise:
- Amplifier Noise
- Physical Noise

ADMX Haloscope

- Dil Fridge: Reaches~100 mK
- Superconducting magnet: ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

Axion Dark Matter eXperiment collaboration

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DE-SC0011665, No. DE-G02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

ADMX Rigging Operation

Hardware Synthetic Axion Injections

Excellent Confirmation of Ability To Detect DFSZ Axions!

ADMX Limits

Projected ADMX Sensitivity

Projected ADMX Sensitivity

Other haloscopes

- Haystac: Yale
 - Exploring higher frequency axions
 - Using squeezed state receiver:
 - Phys. Rev. X 9, 021023 (2019)
 - Exploring Bayesian techniques:
 - Phys. Rev. D 101, 123011 (2020)
 - Phase 1 results complete
 - Phase 2 underway

- Higher frequencies 26.6 ~GHz (110 ueV)
- Physics of the Dark Universe, Volume 18, December 2017, Pages 67-72

CAPP-8TB

 Exploring frequency range near 6.62-6.82 µeV (1.6-1.65 GHz)

New technical paper

https://arxiv.org/pdf/ 2007.07468.pdf

Axion Dark Matter Search around 6.7 µeV S. Lee, S. Ahn, J. Choi, B. R. Ko, Y. K. Semertzidis Phys. Rev. Lett. 124, 101802 —Published 13 March 2020

Dielectric Haloscopes: MADMAX

 Will probe 40-400 µeV range (10-100 GHz)

- 10 T field
- ~80 disks
- Prototype phase using dipole magnet at CERN
- Status Report:

https://arxiv.org/abs/1901.07401

20 CIII - 2 I

Power enhancement from EM waves emitted at the disk boundaries

Stefan Knirck and MADMAX interest group 2020 J. Phys.: Conf. Ser. 1342 012097

B. Majorovits and MADMAX interest groupt 2020 J. Phys.: Conf. Ser. 1342 012098

Helioscopes: IAXO

- Searching for axions/ALPs coming from the Sun
- IAXO requires stronger field and larger volume to improve sensitivity compared to its predecessor, CAST
- IAXO will probe unexplored ALP space

https://arxiv.org/pdf/1904.09155.pdf

29

Conceptual design of the International Axion Observatory (IAXO)

E Armengauda, F T Avignoneb, M Betzc, P Braxd, P Bruna, G Cantatoree, J M Carmonaf, G P Carosig, F Caspersc, S Caspih Published 12 May 2014 • © CERN 2014 for the benefit of the IAXO collaboration.

Journal of Instrumentation, Volume 9, May 2014

There is still uncovered territory here, but that's all the time I have.

Thank you!

Conclusions

- Wave-like dark matter and axions are uncharted territory.
- Progress is being made, especially for the QCD axions, and even at DFSZ sensitivity!
- Real possibility of discovery around the corner!

ADMX: Full Run Cadence

Data-taking operations:

- 1st pass through—determine if we rescan
- Interrupted by noise temperature measurements
- 2nd pass through to achieve necessary sensitivity, or rescan candidates

How the ADMX Receiver Chain Informs the Analysis

- Receiver chain provides means for measuring key RF parameters, such as quality factor
- Two types of noise measurement
- 1) Heating of the 'hotload' via dc current (by design)
- 2) Heating of the quantum amplifier package via an RF switch (by creative impulse when the switch refused to flip)

