Dark Matter Theory

Eric Kuflik

ICHEP 2020

New Ideas in Dark Matter Theory

Eric Kuflik

ICHEP 2020

Why?

Past 40 years

WIMP, glorious WIMP*

WIMP

Correct relic abundance for

 $m_{\rm DM} = \alpha \times 30 \text{ TeV}$

For Weak coupling, Weak scale emerges Weakly Interacting Massive Particle (WIMP)

WIMP

Thermal Relic: Simple and Predictive

time

WIMP

Thermal Relic: Simple and Predictive

time

Guiding principle in cosmology

Searching for WIMPs

Direct Production

Direct Detection

Indirect Detection

e.g. LHC

e.g. LUX

e.g. FERMI

Experiments are getting increasingly sensitive... but we still haven't found it

Status in 2019*

Dominant paradigm being challenged.

Great opportunity for new ideas!

*2020 never happened

Light dark matter

New Theory Ideas

.

 Weakly coupled WIMPs [Pospelov, Ritz, Voloshin 2007; Feng, Kumar 2008] SIMPs [Hochberg, EK, Volansky, Wacker, 2014; + Murayama, 2015] ELDERs [EK, Perelstein, Rey-Le Lorier, Tsai, 2016] [Griest, Seckel 1991; D'Agnolo, Ruderman, 2015] Forbidden dark matter [D'Agnolo, Pappadopulo, Ruderman, 2017] Co-scattering dark matter [Berlin, Blinov 2017] Sub-MeV thermal dark matter [Kim, **EK** 2019] Super heavy thermal dark matter [Kramer, **EK**, Levi, Outmezguine, Ruderman, 2020] Zombies ... are abundant

Ex. 1: Weakly Coupled $2 \rightarrow 2$

$m_{\rm DM} = \alpha \times 30 {\rm ~TeV}$

 $\alpha \ll 1$

[Pospelov, Ritz, Voloshin 2007

Feng, Kumar 2008]

Ex. 2: Forbidden Channels

[Hochberg, **EK**, Wacker, Volansky, 2014]

Ex. 3: SIMPs

$m_{\rm DM} = \alpha \times 100 \,\,{\rm MeV}$

For strong coupling, strong scale emerges Strongly Interacting Massive Particle (SIMP) [Hochberg, **EK**, Wacker, Volansky, 2014]

Ex. 3: SIMPs

Generic.

Dark Sectors

Visible sector

SM is a particle zoo.

Dark sector

Why not in the dark sector too?

QCD-like sector

Think Standard Model!

Dark matter from strongly coupled gauge theories

e.g. $SU(3)_{dark} \times U(1)_{dark}$

 $\mathrm{Sp}(N_c),\,\mathrm{SU}(N_c),\,\mathrm{SO}(N_c)$

kinetically mixed hidden photon (V)

QCD-like theories, pions = dark matter. Many processes, many dark matter mechanisms.

 $3 \rightarrow 2$ processes

(From the Wess-Zumino-Witten term. In QCD describes $K K \rightarrow \pi \pi \pi$)

 $3 \rightarrow 2$ processes

forbidden

$$m_{
ho} \gtrsim m_{\pi}$$

 $3 \rightarrow 2$ processes

forbidden

 $2 \rightarrow 2$ annihilations

 $3 \rightarrow 2$ processes

forbidden

 $2 \rightarrow 2$ annihilations

Predictive

Kinetically mixed U(1) mediator

Predictive

Kinetically mixed U(1) mediator

31

Direct Detection

Dark Spectroscopy
$$e^+e^- \rightarrow \text{resonances}$$

center of mass energy traces the \mathbf{QCD} resonance structure

Dark Spectroscopy $e^+e^- \rightarrow \gamma + \text{invisible resonances}$

mono-photon energy also traces the resonance structure

Super heavy dark matter

Correct relic abundance for $m_{\rm DM} = \alpha \times 30 \text{ TeV}$

For perturbative couplings $\alpha < 4\pi$

 $m_{\rm DM} \lesssim 300 {
m ~TeV}$

Ex. 1: Composite Interactions

dark hydrogen anti-hydrogen annihilation

Harigaya, Ibe, Kaneta, Nakano, Suzuki (2016); J. Smirnov, J. F. Beacom, (2019); Contino, Mitridate, Podo, Redi, (2019); Gross, Mitridate, Redi, Smirnov, Strumia (2019); Geller, Iwamoto, Lee, Shadmi, Telem (2018)

Ex. 1: Composite Interactions

dark hydrogen anti-hydrogen annihilation

Predicts much heavier DM

Compare Processes

VS.

$$\Gamma_{\rm ann} = n_{\rm DM} \left\langle \sigma_{\rm ann} v \right\rangle \propto e^{-m_{\rm DM}/T}$$

$$\Gamma_{\rm ann} = n_{\rm light} \left< \sigma_{\rm ann} v \right>$$

Less efficient

Much more efficient!

[Kramer, EK, Levi, Outmezguine, Ruderman, 2020]

Ex. 2: Zombies

time

[Kramer, EK, Levi, Outmezguine, Ruderman, 2020]

Ex. 2: Zombies

time

 $m_{\rm DM} > m_{\psi}$

Ex. 2: Zombies

$$\left\langle \sigma_{\text{zombie}} v \right\rangle = \frac{\alpha^2}{m_{\text{DM}}^2}$$

time

 $m_{\rm DM} = \alpha^{2/3} \times 10^6 \text{ TeV} \qquad (m_{\rm DM} = 2m_{\psi})$

Ex. 2: Zombies

Metastable DM with strong indirect detection signal

Very efficient because the SM particles are abundant

$$\left\langle \sigma_{\text{chain}} v \right\rangle = \frac{\alpha^2}{m_{\text{DM}}^2}$$

time

$$m_{\rm DM} \simeq \alpha^2 \times 10^{16} {
m GeV}$$

Outlook

- Lots of activity for thermal dark matter.
- Many different interactions, processes, and their relative importance throughout the cosmological history.
- Novel dark matter frameworks.
- Generic.
- Lots of discovery potential for experiments.
- Much more to do.

Thank you!