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A challenge of high luminosity colliders (HL-LHC)

CMS Experiment at the LHC, CERN \
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Challenging for algorithms based
on spatial information only

— non-negligible impact of
pile-up on physics quantities
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Extend our vision with timing detectors

Many presentations at ICHEP 2020 (e.g. ATLAS [C.Rizzi] and CMS [K.E.DiPetrillo, N.Lu])
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The number of use cases for high time resolutions at colliders grows the more we think about it!


https://indico.cern.ch/event/868940/contributions/3813900/attachments/2080543/3496243/HGTD_ICHEP_2020_chiara_rizzi.pdf
https://indico.cern.ch/event/868940/contributions/3813827/attachments/2081082/3496124/2020.07.28.kdp.timingICHEP.pdf
https://indico.cern.ch/event/868940/contributions/3813829/attachments/2080780/3494913/ICHEP2020_CMS_BTL_NanLu.pdf

Trending precision timing technologies

Many technologies have been recently demonstrated capable to achieve O(30) ps
time resolution for minimum ionizing particles

Fast scintillating crystals read out with silicon photomultipliers are a robust, radiation
tolerant and flexible option with advantages for scalability to large area detectors
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Precision timing with crystal based detectors
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1. Primary particle deposits energy in the
scintillator volume (dE/dx, Bethe-Block) and a
finite number of e-h pairs from ionization are
created along the track

2. Generation of a finite number of photons (LY)
following the time distribution of the scintillation
process (rise+decay time)

3. Travel time of photons to reach the
photodetector (absorption, surface
losses/reflections, scattering)

1. Photons are detected with limited
efficiency (PDE) at the photocathode
(generation of photoelectrons)

2. Photoelectrons are amplified via a
multiplication process (gain)

3. A single photoelectron is detected with
limited time resolution (SPTR) related to the
detection and avalanche mechanisms

4. Charge is collected at the anode

1. Signal is shaped and amplified
(electronic noise is present)

2. Time information must be extracted from the
electric signal:

° leading edge discrimination

° constant fraction discrimination

° fine waveform sampling

2. Time stamp from the discrimination is with
respect to an internal clock of the instrument
(which may jitter)

Several steps in the overall detection chain need to be optimized to achieve picosecond-level timing!




Synergies with medical imaging applications

e Crystals and SiPMs are of great interest also for time-of-flight positron emission tomography

e Both fields are targeting unprecedented time resolution to enable new detector features

e Personal experience: synergies and knowledge transfer between the medical imaging
and HEP fields boosted the development of crystal+SiPM technologies for timing applications

e Similar challenges:
o  Hunt for fast, bright,
o and dense crystals
o  SiPMs with high PDE
and good single photon
time resolution

More HEP challenges:
o Larger areas
o Radiation tolerance
o Higher rate

Gamma ray
detectors
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e Working closely with crystal
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The impact of light transit time

Despite the larger light signal in longer crystals the
improvement in time resolution is small since light is
produced over a larger time interval

Teflon wrapped LYSO:Ce crystals
LYSO:Ce crystals + Hamamatsu TVC MPPC of 3x3 mm? section and length*within 5 and*80 mm
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Effect of Mg?* ions co-doping on timing performance and radiation @CWMM
tolerance of Cerium doped GdsAl,Gas04; crystals
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10 ps time resolution
achieved!

Detection of high energy muons with sub-20 ps timing resolution @CmsMa,k
using L(Y)SO crystals and SiPM readout

A. Benaglia**, S. Gundacker?, P. Lecoq?, M.T. Lucchini?, A. Para®, K. Pauwels?, E. Auffray °
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Silicon Photomultipliers for timing
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Challenges of large area detectors

Scaling up a proof-of-concept detector technology to instrument large areas typical of
collider experiments while maintaining excellent time resolution poses new challenges
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An example: the CMS MIP Timing Detector

e R&D on precision timing with fast crystals converged on https://cds.cern.ch/record/2667167
a concrete proposal for a large area timing detector CERN European Orgaizaton or Nuces Research  cumurczmua
Organisation européenne pour la recherche nucléaire 20 March 2019

e Global detector optimization exploits different

technologies in different regions of the detector ‘ M S

° Thin layer between tracker and calorimeters
. MIP sensitivity with time resolution of 30-50 ps
. Hermetic coverage for |n|<3.0

BARREL

Surface ~ 38 m?

Number of channels ~ 332k
Radiation level ~2x10™ neq/cmz
Sensors: LYSO crystals + SiPMs

ENDCAPS

Surface ~ 14 m?

Number of channels ~ 8500k
Radiation level ~2x10' n__ fcm?
Sensors: Low gain avalanche detectors

A MIP Timing Detector
for the CMS Phase-2 Upgrade
Technical Design Report



https://cds.cern.ch/record/2667167
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