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Introduction

to understand the basic structure of elementary particles we use
scattering experiments

basic function: scattering cross section σ: connected with
probability for a given process of scattered particles as a function of
their energy and momentum

+ dependence on the angles → differential cross-section dσ/dΩ

theoretical prediction based on the quantum field theory

basic object: scattering amplitude A

due to translation invariance: scattering amplitudes are distributions

An = An(pµ1 , . . . , p
µ
n )δ(Σpµi )Πδ(p2i = m2

i )

dσ/dΩ ∼ |A|2

scattering amplitude can be calculated systematically as an
expansion of a small parameter using the so-call Feynman diagrams
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Example: gluon amplitudes
standard method of calculating n-gluon scattering processes:

dominated by pure-gluon interactions in QCD

elementary 3pt and 4pt vertices

construct all possible Feynman diagrams, e.g. 8pt tree-level:

+ + . . .

×280 ×1680 ×32340

In total 34300 diagrams for the 8pts

complicated already for the tree level diagrams even for small
number of external legs
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History: gluon amplitude, tree-level
3pt: 1 diagram, on-shell = 0

4pt: 4 diagrams can be calculated by hand:

intermediate steps complicated but differential cross section “nice”
5pt: calculated in ’80, calculation blows up on several pages

total number: 25 = ×15 × 10
structure of the numerators, schematically:

double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),
single-propagator: (pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard methods, but...

4/34



History: gluon amplitude, tree-level
3pt: 1 diagram, on-shell = 0
4pt: 4 diagrams can be calculated by hand:

intermediate steps complicated but differential cross section “nice”

5pt: calculated in ’80, calculation blows up on several pages

total number: 25 = ×15 × 10
structure of the numerators, schematically:

double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),
single-propagator: (pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard methods, but...

4/34



History: gluon amplitude, tree-level
3pt: 1 diagram, on-shell = 0
4pt: 4 diagrams can be calculated by hand:

intermediate steps complicated but differential cross section “nice”
5pt: calculated in ’80, calculation blows up on several pages

total number: 25 = ×15 × 10
structure of the numerators, schematically:

double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),
single-propagator: (pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard methods, but...

4/34



History: gluon amplitude, tree-level
3pt: 1 diagram, on-shell = 0
4pt: 4 diagrams can be calculated by hand:

intermediate steps complicated but differential cross section “nice”
5pt: calculated in ’80, calculation blows up on several pages

total number: 25 = ×15 × 10
structure of the numerators, schematically:

double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),
single-propagator: (pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard methods, but...
4/34



History: gluon amplitude, tree-level, 6pt
SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work

5/34



History: gluon amplitude, tree-level, 6pt
Parke and Taylor concluded:

Indeed it was given a year later [Parke, Taylor ’86] for the MHV:

An(−−+ . . .+) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke,Xu ’87]

〈ij〉 =
√
|2pi · pj |eiφij

Is there some better way to calculate?
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Example: gluon amplitudes

Important simplification at tree level:

colour ordering → stripped amplitude

Ma1...an(p1, . . . pn) =
∑
σ/Zn

Tr(taσ(1) . . . taσ(n))Mσ(p1, . . . , pn)

Mσ(pσ(1), . . . , pσ(n)) = M(p1, . . . , pn) ≡ M(1, 2, . . . n)

propagators ⇒ the only poles of Mσ

thanks to ordering the only possible poles are:

P2
ij = (pi + pi+1 + . . .+ pj−1 + pj)

2
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Pole structure

Weinberg’s theorem (one-particle unitarity): on the factorization channel

lim
P2
1j→0

M(1, 2, . . . n) =
∑
hl

ML(1, 2 . . . j , l)× 1

P2
1j

×MR(l , j + 1, . . . n)
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten ’05]

Reconstruct the amplitude from its poles (in complex plane)

shift in two external momenta

pi → pi + zq, pj → pj − zq

keep pi and pj on-shell, i.e.

q2 = q · pi = q · pj = 0

amplitude becomes a meromorphic function A(z)

only simple poles coming from propagators Pab(z)

original function is A(0)
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BCFW relations: factorization channels

Cauchy’s theorem

0 =

1

2πi

∫
dz

z
A(z) = A(0) +

∑
k

Res (A, zk)

zk

If A(z) vanishes for z →∞

A = A(0) = −
∑
k

Res (A, zk)

zk
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BCFW relations
P2
ab(z) = 0 if one and only one i (or j) in (a, a + 1, . . . , b).

Suppose i ∈ (a, . . . , b) 63 j

P2
ab(z) = (pa + . . .+ pi−1 + pi + zq + pi+1 + . . .+ pb)2 =

= P2
ab + 2(q · Pab)z = 0

solution

zab = −
P2
ab

2(q · Pab)
⇒ P2

ab(z) = −
P2
ab

zab
(z − zab)

and thus using the one-particle unitarity:

Res(A, zab) =
∑
s

A−sL (zab)× −zab
P2
ab

× As
R(zab)

(sum via allowed helicities)
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BCFW relations

Using Cauchy’s formula, we have finally as a result

A =
∑
k,s

A−skL (zk)
1

P2
k

Ask
R (zk)

based on two-line shift (convenient choice: adjacent i ,j)

recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW recursion relations: problems

We have assumed that

A(z)→ 0, for z →∞

More generally we have to include a boundary term in the Cauchy’s
theorem.
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Effective field theories
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Effective field theories: general picture
Now we have infinitely many unfixed “λ” terms. Schematically

L = 1
2(∂φ)2 + λ4(∂m4φ)4 + λ6(∂m6φ)6 + . . .

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

M6 =
∑

I=poles

λ24
. . .

PI
+ λ6(. . .)

λ6 part: not fixed by the pole behaviour.

Task: to find a condition in order to link these two terms
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Effective field theories: introduction

Usual steps:

Symmetry → Lagrangian → Amplitudes → physical quantities

(cross-section, masses,
decay constants, . . . )

In our work – opposite direction:

Amplitudes → physical quantities (→ Lagrangian → Symmetry)

Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny, Chia-Hsien

Shen, Jaroslav Trnka and Congkao Wen
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Effective field theories: scalar theories, 3pt

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for any three-particle amplitude

A(1h12h23h3) =

{
〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 , Σhi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 , Σhi ≥ 0

n.b. again the spinor-helicity notation, e.g. pi · pj ∼ 〈ij〉[ij ]

For scalars (hi = 0) this is a constant - corresponding to Lint = λφ3.

All derivatives can be removed by equations of motions (boxes)

Lint = (∂α . . . ∂ωφ)(∂α . . . ∂ωφ)φ → Lint = (�φ)(. . .)
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Effective field theories: scalar theories, 4pt

We start with (m counts derivatives)

Lint = λ4∂
mφ4

n.b. we want to connect this four-point vertex with the 6-point contact
terms

This rules out again the no-derivative terms, as the powercounting
dictates:

∂m × 1

∂2
× ∂m → ∂2m−2φ6

and we have to start at least with m = 2, i.e. two derivatives
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Simplest example: two derivatives, single scalar

L = 1
2∂µφ∂

µφ+ λ4∂
2φ4 + λ6∂

2φ6 + . . .

How to connect λ4 and λ6?
Note that this Lagrangian, an infinite series, looks complicated, but it is
not the case. It represents a free theory:

L = 1
2∂µφ∂

µφ (1 + λ4φ
2 + . . .)︸ ︷︷ ︸

F (φ)

F (φ) can be removed by a field redefinition

Outcome so far: the non-trivial simplest cases:

more than two derivatives

more flavours (φ→ φ1, φ2, . . .)
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More flavours

[KK,Novotny,Trnka’13]

L = 1
2∂µφ

i∂µφi + λijkl∂µφ
i∂µφjφkφl + λi1...l6∂µφ

i1∂µφi2φi3 . . . φi6 + . . .

Can be used for systematic studies of two species, three species, etc.

Very complicated generally

Assume some simplification, a group structure

φ = φaT a

motivated by the ‘gluon case’: flavour ordering

Aa1...an =
∑
perm

Tr(T a1 . . .T an)A(p1, . . . pn)
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More flavours: stripped amplitude

first non-trivial case 6pt scattering:

power-counting is ok:

λ24 p
2 1

p2
p2 + λ6 p

2

in order to combine the pole and contact term we need to consider some
limit. The most natural candidate: we will demand soft limit, i.e.

A→ 0, for p → 0

⇒ λ24 ∼ λ6
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Standard direction(s)
Assuming the shift symmetry

φa → φa + εa

⇒ Noether current

Aa
µ =

δL
δ∂µφa

⇒ Ward identity ⇒ LSZ

〈0|Aa
µ(x)|φb(p)〉 = iF δabpµe

−ipx

⇒ Adler zero
lim
p→0
〈f |i + φa(p)〉 = 0

⇒ CCWZ: non-linear sigma model

L =
F 2

2
Tr(∂µU

†∂µU), U = e
i
F
φaT a

eg. [Weinber’66], [Ian Low ’14-’15], [Goon,Joyce,Trodden ’14], [Bogers,Brauner ’18],. . .
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Bottom → up construction
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Natural classification: σ and ρ

Soft limit of one external leg of the tree-level amplitude

A(tp1, p2, . . . , pn) = O(tσ), as tp1 → 0

Interaction term
L = ∂mφn

Another natural parameter is (counts the homogeneity)

ρ =
m − 2

n − 2
“averaging number of derivatives”
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Non-trivial cases
for: L = ∂mφn : m < σn

or

σ >
(n − 2)ρ+ 2

n

i.e.

ρ σ at least

0 1

1 2

2 2

3 3

i.e. non-trivial regime for ρ ≤ σ
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First case: ρ = 0 (i.e. two derivatives)

Schematically for single scalar case

L = 1
2(∂φ)2 +

∑
i

λi4(∂2φ4) +
∑
i

λi6(∂2φ6) + . . .

similarly for multi-flavour (φi : φ1, φ2, . . .).
non-trivial case

σ = 1

Outcome:

single scalar: free theory

multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]
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Second case: ρ = 1, σ = 2 (double soft limit)
1. focus on the lowest combination and fix the form:

Lint = c2(∂φ · ∂φ)2 + c3(∂φ · ∂φ)3 condition: c3 = 4c42

2. find the symmetry

φ→ φ− bρx
ρ + bρ∂

ρφφ (again up to 6pt so far)

3. ansatz of the form

H
HHH

HHHj

��������)

cn(∂φ · ∂φ)n + cn+1(∂φ · ∂φ)n∂φ · ∂φ

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .
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Second case: ρ = 1, σ = 2 (double soft limit)

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .

solution:
L = −

√
1− (∂φ · ∂φ)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim
Minkowski space

Á

Remark: soft limit and symmetry are “equivalent”
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Third case: ρ = 2, σ = 2 (double soft limit)
Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian

L =
d+1∑
n=1

dnφLdern−1

Ldern = εµ1...µd εν1...νd
n∏

i=1

∂µi∂νiφ

d∏
j=n+1

ηµjνj = −(d − n)! det
{
∂νi∂νjφ

}
.

It possesses the Galilean shift symmetry

φ→ φ+ a + bµx
µ

and leads to EoM of second-order in field derivatives.

Galileon itself is a remarkable theory: can be connected with a local
modification of gravity [Nicolis, Rattazzi, Trincherini ’09].
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Surprise: ρ = 2, σ = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley ’14] [KK, Novotny ’14])

we demanded O(p3) behaviour

we have verified: possible up to very high-pt order

suggested a new theory: special galileon [Cheung,KK,Novotny,Trnka

1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and

A. Joyce 1501.07600]

φ→ φ+ sµνx
µxν − 12λ4s

µν∂µφ∂νφ

theory appears also in the context of CHY-type formulation
[Cachazo, He, Yuan 1412.3479, version 2]
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Classification of EFTs (spin-0): result
“soft bootstrap” ⇒ Periodic table of scalar theories
[Cheung, KK, Novotny, Shen, Trnka 2017]

�

⇢

0 1 2 3

1

2

3

0

P(X) DBI

NLSM

Gal
sGal

trivial soft 
behavior

forbidden

4

WZW
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EFT: further avenues

different spins studied, e.g. spin-1/2 Elvang et al.’18 or spin 1:
Cheung,KK,Novotny,Shen,Trnka,Wen’18

mixing different spins −→ see Přeučil’s talk

going beyond O(p2) NLSM (cf. Bijnens,KK,Sjö ’19)

multiple flavours – especially without flavour ordering:
only two-flavour case fully classified −→ see following

connection with CHY [Cachazo, He, Yuan] formalism

role of masses

role of dualities

. . .
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Galileons

Galileons popped out naturally from our classification. What are they?
Motivation: dark energy problem may imply some modification of gravity
on large scales. Nowadays there are various dynamical gravity models:
f (R) gravity, scalar-tensor theory, Dvali-Gabadadze-Porrati model,
Galileon gravity,. . . .
General relativity modified, but we need to reproduce the successful
measurements at solar system scales ⇒ screening mechanism, e.g.:

Chameleon mechanism

Vainshtein mechanism [’72] [for theories with second-derivatives of
φ, for short-length scales the non-linearity are large]

The (classical) Lagrangian density definition:

invariant under the Galilean shift transformation
φ→ φ+ a + bµx

µ

lead to equations of motions of second-order in field derivatives
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Galileons

Tree-level diagrams Up to 5-pt we have the following tree-level Feynman
diagrams:

M(1, 2, 3) = 6d3G (1, 2) =
3

2
d3p

4
3 = 0

M(1, 2, 3, 4) = 12(2d4 − 9d2
3 )G (1, 2, 3)

M(1, 2, 3, 4, 5) = −24
(
72d3

3 − 24d3d4 + 5d5
)

× G (1, 2, 3, 4)

Surprisingly very simple results: cancellation between different
contributions.
Explanation: galileon duality [P. Creminelli, M. Serone, G. Trevisan and E.

Trincherini ’14], [C. de Rham, L. Keltner and A. J. Tolley,’14], [KK and J.

Novotny ’14]
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Multi galileons

Amplitude methods suit well to a systematic study of multigalileon
theories.
Work in progress (in collaboration with Jiri Novotny):
Discussion on:

role of duality in multigalileon theories

role of the 3-line vertices

role of the new soft theorems
soft theorem with the “right-hand side”
consequence of [KK, Novotny, Shifman, Trnka ’19]

definition of galileon theory itself

complete classification
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Summary

Mainly presented a

Short overview of Amplitudes for EFTs

Very efficient way of studying new phenomena

Briefly presented a new study on the multigalileon theories

Thank you!
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