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Introduction

@ to understand the basic structure of elementary particles we use
scattering experiments

@ basic function: scattering cross section o: connected with
probability for a given process of scattered particles as a function of
their energy and momentum

+ dependence on the angles — differential cross-section do/dQ
theoretical prediction based on the quantum field theory

basic object: scattering amplitude A

due to translation invariance: scattering amplitudes are distributions
An = An(pYs. ., pl)S(ZP NS (P} = m7)

o do/dQ ~ |A]?
@ scattering amplitude can be calculated systematically as an
expansion of a small parameter using the so-call Feynman diagrams
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Example: gluon amplitudes

standard method of calculating n-gluon scattering processes:
@ dominated by pure-gluon interactions in QCD
@ elementary 3pt and 4pt vertices

A K

@ construct all possible Feynman diagrams, e.g. 8pt tree-level:

%280
In total 34300 diagrams for the 8pts
@ complicated already for the tree level diagrams even for small
number of external legs

x 32340
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History: gluon amplitude, tree-level
@ 3pt: 1 diagram, on-shell =0
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History: gluon amplitude, tree-level

@ 3pt: 1 diagram, on-shell =0
° 4pt 4 diagrams can be calculated by hand:

|ntermed|ate steps compllcated but dlfferentlal cross section “nice”
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History: gluon amplitude, tree-level

@ 3pt: 1 diagram, on-shell =0
@ 4pt: 4 diagrams can be calculated by hand:

ZMB BMZ 4W3 z%;i
1 4 1 4 1 2

intermediate steps complicated but differential cross section “nice”
@ 5pt: calculated in '80, calculation blows up on several pages

b W o

total number: 25 = x15 x 10
structure of the numerators, schematically:

double-propagator: (p; - pj)(pk - €)(€ - €)(e - €),
single-propagator: (px - €)(e - €)(e - €),
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History: gluon amplitude, tree-level

@ 3pt: 1 diagram, on-shell =0
@ 4pt: 4 diagrams can be calculated by hand:

zzig)’@m@is 3?}@?@2‘22 4W3 Z@;‘i
1 4 1 4 1 2

intermediate steps complicated but differential cross section “nice”
@ 5pt: calculated in '80, calculation blows up on several pages

b W o

total number: 25 = x15 x 10
structure of the numerators, schematically:

double-propagator: (p; - pj)(pk - €)(€ - €)(e - €),
single-propagator: (px - €)(e - €)(e - €),

@ 6Opt: impossible by standard methods, but... A
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History: gluon amplitude, tree-level, 6pt

SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Ne I Accele Lab ry, P.O. Box 500, Batavia, IL 60510 USA

Recceived 13 September 1985

The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.

Theoretical predictions for four-jet production at hadron colliders allow detailed
tests of QCD. Moreover, at SSC energies, four jets become a serious background
to many interesting processes which probe new physics, e.g. pair production of
electroweak bosons [1]. Hence a detailed knowledge of four-jet event characteristics
is crucial for good background rejection. Although some individual contributions
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon
to four-gluon scattering, which is the dominant contribution for a wide range of
subprocess energies, has remained beyond the scope of previous computational
techniques. Here we outline our calculation of the cross section for this process, in
the tree approximation of perturbative QCD. The final cross section is presented in
a form suitable for fast numerical calculations.

Our calculation makes use of techniques developed in ref. [3], based on the
application of extended supersymmetry. We adopt the convention that all particles
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History: gluon amplitude, tree-level, 6pt

Parke and Taylor concluded:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.
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History: gluon amplitude, tree-level, 6pt

Parke and Taylor concluded:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.

Indeed it was given a year later [Parke, Taylor '86] for the MHV:

(12)*
(12)(23) ... (n1)

Apf(——+...+) =

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke, Xu '87]

(i) = \/12pi - pjle’®”

Is there some better way to calculate?
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Example: gluon amplitudes

2 3
Important simplification at tree level:
. . . 1 .
@ colour ordering — stripped amplitude n
Ma=2n(py ... Z Tr(t )My (pa, -

o/Z,

Ma(pa(l)v s 7p0'(n)) = M(pla SR pn) = M(]-a 2,... n)
@ propagators = the only poles of M,

@ thanks to ordering the only possible poles are:

Pi?:(pi+Pi+1+...—|—pj_1+pj)2

, Pn)
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Pole structure

Weinberg's theorem (one-particle unitarity): on the factorization channel

1
lim M(1 My ( Mg(1 1,.
PQIrio Z L Ji1) P2 X Ml + )
J Jtl
[ [
2
1 n
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten '05]

Reconstruct the amplitude from its poles (in complex plane)

@ shift in two external momenta
pi — pi + zq, pPj — pj —2Zq
@ keep p; and p; on-shell, i.e.
2 _ — —
9" =q-pi=q-pi=0

e amplitude becomes a meromorphic function A(z)
@ only simple poles coming from propagators P,(z)

e original function is A(0)

9/34



Imz

BCFW relations: factorization channels

S0

Cauchy's theorem

1 [

27 z

Az) = A(0) + 3 B A zk) (ZA’ )
k

k
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Imz

BCFW relations: factorization channels

S0

Cauchy's theorem

1 dz
0=— [ —
27 z

Az) = A(0) + 3 B A zk) (ZA’ )
k

k

If A(z) vanishes for z — oo

A= AQ) = -y REAE (Zf’zk)
k
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BCFW relations
P2 (z) =0 if one and only one i (or j) in (a,a+1,...,b).

Suppose / € (a,...,b) ZJ

P2(2) = (pa+ .-+ pic1+pi+ 29+ pi1+---+pp)° =
= P§b+2(q-Pab)z: 0

solution
sz 2 ’D2b
Zop = ———2— = Ps(z) = ——22(z — zap
o= 5(2) = (2 zan)

and thus using the one-particle unitarity:

Res(A, z.p) = ZA (Zab) P b A% (zap)
ab

(sum via allowed helicities)
1132



BCFW relations

Using Cauchy's formula, we have finally as a result

_ 1
A = Z AL sk(Zk)P—l%A%(Zk)
k,s

based on two-line shift (convenient choice: adjacent i,j)
recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW recursion relations: problems

We have assumed that
A(z) — 0, for zZ— 00

More generally we have to include a boundary term in the Cauchy’s
theorem.

13/32



Effective field theories
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Effective field theories: general picture
Now we have infinitely many unfixed “A" terms. Schematically

= 2(99)* + \a(0™ )" + X6(0™¢)° +

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

Z )\4 —l—)\ﬁ( )

I=poles

A part: not fixed by the pole behaviour.
Task: to find a condition in order to link these two terms

14 /34



Effective field theories: introduction

Usual steps:

Symmetry — Lagrangian — Amplitudes — physical quantities

(cross-section, masses,
decay constants, ...)

In our work — opposite direction:

Amplitudes — physical quantities (— Lagrangian — Symmetry)
Our aim: classification of interesting EFTs

works done in collaborations with Clifford Cheung, Jiri Novotny, Chia-Hsien
Shen, Jaroslav Trnka and Congkao Wen

15/32



Effective field theories: scalar theories, 3pt

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.
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Effective field theories: scalar theories, 3pt

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for any three-particle amplitude

(12)hs=m=h2 (p3ym=ha=hs (31 ) he=hs=h1 5", < 0

hinhaqh
A(l 19h23 3) — { [12]h1+h27h3[23]h2+h3*h1 [31]h3+h17h2 Yh; >0

n.b. again the spinor-helicity notation, e.g. p; - p; ~ (ij)[ij]
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Effective field theories: scalar theories, 3pt

As simple as possible: a spin-0 massless degree of freedom with a
three-point interaction.

General formula for any three-particle amplitude

(12)hs=m=h2 (p3ym=ha=hs (31 ) he=hs=h1 5", < 0

hinhaqh
A(l 19h23 3) — { [12]h1+h27h3[23]h2+h3*h1 [31]h3+h17h2 Yh; >0

n.b. again the spinor-helicity notation, e.g. p; - p; ~ (ij)[ij]
For scalars (h; = 0) this is a constant - corresponding to Lj,: = 3.

All derivatives can be removed by equations of motions (boxes)

Lint = On...0,0)(0°...0°0)6 — L= (08)(...)
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Effective field theories: scalar theories, 4pt
We start with (m counts derivatives)
Lint = A0 ¢*

n.b. we want to connect this four-point vertex with the 6-point contact
terms

This rules out again the no-derivative terms, as the powercounting
dictates: 1
0" x o5 x 0" = P20
92
and we have to start at least with m = 2, i.e. two derivatives
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Simplest example: two derivatives, single scalar

L=10,00"¢ + \0?¢* + N0 ¢° + . ..

How to connect A4 and \g?
Note that this Lagrangian, an infinite series, looks complicated, but it is
not the case. It represents a free theory:

L=10,00"¢(1+ Mg +...)
F(¢)
F(¢) can be removed by a field redefinition
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Simplest example: two derivatives, single scalar

L=10,00"¢ + \0?¢* + N0 ¢° + . ..

How to connect A4 and \g?
Note that this Lagrangian, an infinite series, looks complicated, but it is
not the case. It represents a free theory:

L=10,00"¢(1+ \ag®+...)
F(¢)
F(¢) can be removed by a field redefinition

Outcome so far: the non-trivial simplest cases:
@ more than two derivatives

e more flavours (¢ — ¢1, P2, ...)
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More flavours
[KK,Novotny, Trnka'13]

L=10,0"0"0" + Nji0ud' 0"/ ¥ ¢! + Ny 150" OF P2 . P + ..

@ Can be used for systematic studies of two species, three species, etc.
@ Very complicated generally

@ Assume some simplification, a group structure
=T
@ motivated by the ‘gluon case’: flavour ordering

Aal...an — Z Tr( Tal . Tan)A(p]-’ . pn)

perm
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More flavours: stripped amplitude

first non-trivial case 6pt scattering:

4 2 3 1 2 3 4

N LN SN S
S Ne o Ns s N\,

power-counting is ok:

1
¥ pz?p2 + X6 p

in order to combine the pole and contact term we need to consider some
l[imit. The most natural candidate: we will demand soft limit, i.e.

A—0, for p—0

= AN~X
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Standard direction(s)
Assuming the shift symmetry

¢a 4) d)a +€a
= Noether current

. 0L

I SOH 2

= Ward identity = LSZ
(01AZ (x)|6(p)) = iF 6P pe™ P
= Adler zero
. . _
lim (7l + 6°(p)) = 0
= CCWZ: non-linear sigma model

F2 i taTa
L= 7Tr(8HUT8“U), U=er?T

eg. [Weinber'66], [lan Low '14-'15], [Goon,Joyce, Trodden '14], [Bogers,Brauner '18],. ..
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Bottom — up construction
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Natural classification: o and p

Soft limit of one external leg of the tree-level amplitude

A(tplap21"'7pn):O(tU)7 as tp1 — 0

Interaction term

L=0mg"

Another natural parameter is (counts the homogeneity)

“averaging number of derivatives”
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Non-trivial cases

for: L=0"¢": m< on
or
-2 2
o> (1=2)p+2
n
i.e.
p | o at least
0 1
1 2
2 2
3 3

i.e. non-trivial regime for p < o
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First case: p = 0 (i.e. two derivatives)

Schematically for single scalar case
L=3(00)+ > MNy(070") + ) A(0%0°) + ...

similarly for multi-flavour (¢;: ¢1, ¢, .. .).
non-trivial case
oc=1
Outcome:
@ single scalar: free theory

e multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye '70], [Ellis, Renner '70]
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + c3(9¢ - D9)> condition: c3 = 4cy

N/
N
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + c3(9¢ - D9)> condition: c3 = 4cy

N/
N

2. find the symmetry

¢ — ¢ — bpx” + b,0°¢ ¢ (again up to 6pt so far)
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + c3(9¢ - D9)> condition: c3 = 4cy

N/
N

2. find the symmetry

¢ — ¢ — bpx” + b,0°¢ ¢ (again up to 6pt so far)

3. ansatz of the form

cn(0¢ - 99)" + cpi1(06 - 09)"0¢ - 09

1= (2n— 1)Cn
_ 1 5

4. in order to cancel: 2(n+ 1)cnt
ie. C]_:%jCQZ%,C

3= 160 = 1280 -

25 /34



Second case: p =1, 0 = 2 (double soft limit)

4. in order to cancel: 2(n+1)cpp1 = (2n —1)cn
1 1 5
i.e. c1 = 5= =g, C3_16’C4 287" "

solution:

L=—1-(9-09)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] — DBI
action

Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim

Minkowski space

Remark: soft limit and symmetry are “equivalent”
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Third case: p =2, o0 = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon

Lagrangian
d+1

L= dnpLy™
n=1

n d
Eﬁer = ght-HdgVi--Vd Hau;awd’ H Nujv; = —(d — n)!det {8”"8,,j¢} .

i=1 j=n+1
It possesses the Galilean shift symmetry
¢ — o+ a+ byx!

and leads to EoM of second-order in field derivatives.

Galileon itself is a remarkable theory: can be connected with a local
modification of gravity [Nicolis, Rattazzi, Trincherini '09].
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Surprise: p =2, 0 = 3 (enhanced soft limit)

o general galileon: three parameters (in 4D)

@ only two relevant (due to dualities [de Rham, Keltner, Tolley "14] [KK, Novotny '14])
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley "14] [KK, Novotny '14])
we demanded O(p3®) behaviour

we have verified: possible up to very high-pt order

suggested a new theory: special galileon [Cheung KK,Novotny, Trnka
1412.4095]
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)
only two relevant (due to dualities [de Rham, Keltner, Tolley "14] [KK, Novotny '14])
we demanded O(p3®) behaviour

we have verified: possible up to very high-pt order

suggested a new theory: special galileon [Cheung KK,Novotny, Trnka
1412.4095]

@ symmetry explanation: hidden symmetry [K. Hinterbichler and
A. Joyce 1501.07600]

O — ¢+ suxtx” —12X4s"7 0,00, ¢

@ theory appears also in the context of CHY-type formulation
[Cachazo, He, Yuan 1412.3479, version 2]
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Classification of EFTs (spin-0): result

“soft bootstrap” = Periodic table of scalar theories
[Cheung, KK, Novotny, Shen, Trnka 2017]

3

P
A
trivial soft
behavior
sGal °
Gal
P(X) DBlg forbidden
o VW
NLSM
?
0 1 2 3
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EFT: further avenues

e different spins studied, e.g. spin-1/2 Elvang et al."18 or spin 1:
Cheung,KK,Novotny,Shen, Trnka,Wen'18

e mixing different spins — see Pfeutil’s talk
e going beyond O(p?) NLSM (cf. Bijnens KK,Sjé '19)

multiple flavours — especially without flavour ordering:
only two-flavour case fully classified — see following

connection with CHY [Cachazo, He, Yuan] formalism
role of masses

role of dualities
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Galileons

Galileons popped out naturally from our classification. What are they?
Motivation: dark energy problem may imply some modification of gravity
on large scales. Nowadays there are various dynamical gravity models:
f(R) gravity, scalar-tensor theory, Dvali-Gabadadze-Porrati model,
Galileon gravity,. . ..

General relativity modified, but we need to reproduce the successful
measurements at solar system scales = screening mechanism, e.g.:

@ Chameleon mechanism

@ Vainshtein mechanism ['72] [for theories with second-derivatives of
¢, for short-length scales the non-linearity are large]

The (classical) Lagrangian density definition:

@ invariant under the Galilean shift transformation
¢ — ¢+ a+ byx*

@ lead to equations of motions of second-order in field derivatives
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Galileons

Tree-level diagrams Up to 5-pt we have the following tree-level Feynman
diagrams:

> >< > < M(1,2,3) = 6d5G(1,2) = gd3p§ —0
M(1,2,3,4) = 12(2ds — 9d3)G(1,2,3)
M(1,2,3,4,5) = —24 (72d; — 24d3ds + 5ds)

V ‘ x G(1,2,3,4)
A

Surprisingly very simple results: cancellation between different
contributions.

Explanation: galileon duality [P. Creminelli, M. Serone, G. Trevisan and E.
Trincherini '14], [C. de Rham, L. Keltner and A. J. Tolley,'14], [KK and J.
Novotny '14]
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Multi galileons

Amplitude methods suit well to a systematic study of multigalileon
theories.

Work in progress (in collaboration with Jiri Novotny):

Discussion on:

@ role of duality in multigalileon theories
@ role of the 3-line vertices

@ role of the new soft theorems
soft theorem with the “right-hand side”
consequence of [KK, Novotny, Shifman, Trnka '19]

@ definition of galileon theory itself

@ complete classification
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Summary

Mainly presented a
@ Short overview of Amplitudes for EFTs
@ Very efficient way of studying new phenomena

@ Briefly presented a new study on the multigalileon theories
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Summary

Mainly presented a
@ Short overview of Amplitudes for EFTs
@ Very efficient way of studying new phenomena

@ Briefly presented a new study on the multigalileon theories

Thank you!
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