A muon tracking algorithm for Level 1 trigger in the CMS barrel muon chambers during HL-LHC

Jaime León Holgado

On behalf of the CMS Collaboration

International Conference on High Energy Physics 2020, July 29th

MINISTERIO DE CIENCIA E INNOVACIÓN

More information about this talk can be found here.

The Analytical Method

In the CMS barrel, muon trigger and reconstruction are performed by the Drift Tube chambers (DT), complemented by a system of RPC.

High Luminosity-LHC

- Increasing LHC instantaneous luminosity up to 7.5×10^{34} from the present 2×10^{34} cm⁻²s⁻¹.
- Present DT on-detector electronics going to be substituted for a system that digitalizes signals and pushes every hit to a new back-end in charge of trigger primitive generation.

The Analytical Method (AM)

- Grouping.
- Fitting.
- Correlation.
- OT+RPC Super-primitive combination

Performance evaluation in simulation

- The algorithm's performance has been evaluated in a sample of simulated single-muons with an average pile-up of 200 collisions/BX.
- Efficiencies are calculated with respect to offline segments with quality cuts and geometrically matched to the generated muons. Only trigger primitives in the right BX are considered efficient.
- Resolutions are computed with respect to the simulated hits in the muon chambers.

Good efficiency in the whole detector, small decrease from ageing expected

Sector ϕ resolution (< 0.05 mrad) improving \sim 6 times w.r.t Phase 1.

Performance evaluation in data

Firmware-emulator comparison

- Injecting hits from selected $Z \to \mu\mu$ events from 2016 real collision data.
- Comparing the primitives obtained with the same hits and lateralities in firmware and emulator.

Agreement to the Least Significant Bit.

DT Slice Test

- One CMS sector instrumented with the new front-end and back-end prototypes.
- One of these back-end boards runs the AM firmware, so it can be validated using real cosmic muons.

Inherent online time resolution of few ns.

The CMS Level-1 Endcap Muon Trigger at the High-Luminosity LHC

40th International Conference of High Energy Physics July 29th, 2020

Daniel Guerrero on behalf of CMS Collaboration University of Florida daniel.querrero@cern.ch UF | UNIVERSITY | The Collaboration UF | The Collaboration | UNIVERSITY | UNIVERSITY

CMS Phase-2 Muon Detectors & Level-1 Trigger Upgrade

New territory to be explored at the High Luminosity-LHC

- \sqrt{s} = 14 TeV pp collisions, 7.5 x 10³⁴cm⁻² s⁻¹ instantaneous luminosity, 200 pile-up (PU)
- Challenging data-taking conditions: High particle multiplicity & intense radiation environment
- Upgrades to overcome challenges & fully exploit 4000 fb⁻¹ of integrated luminosity

Muon Subdetectors Upgrade

- Consolidated electronics in current Phase-1 chambers
- More accurate information for the Level-1 trigger
 - Position, time, quality & bend of local hits (stubs)
- **Extended coverage in forward region (up to |\eta|=2.8)**

Level-1 Trigger Upgrade

- Architecture with four independent trigger paths:
 - Calorimeter, muon, <u>tracker & particle-flow</u>
- New correlator layer:
 - Multiple objects correlation & high-level triggers generation

Triggering on endcap muons at the HL-LHC

Momentum resolution improvement is key \rightarrow Rate mitigation & access to lower trigger thresholds

Endc Regio

Endcap standalone prompt muon reconstruction (EMTF++)

Region with complex detector geometry, nonuniform magnetic field & punch-through

- Set of stubs compatible with a muon track are found via <u>pattern recognition</u>
- Stub information is then used to get PT-assignment using a neural network(NN)
- \sim 20 kHz rate at 20 GeV PT threshold \rightarrow ~2.5 x lower rate w.r.t. Phase-1 algorithm (EMTF)
- Similar technique allows for displaced muon reconstruction

Track-correlated muons in Global Muon Trigger (GMT) / Correlator

Tracker tracks (Tk) are matched to EMTF++ tracks or individual muon stubs via Pt-dependent

 $\Delta \phi / \Delta \eta$ windows to push further the performance:

Tk + EMTF++: 15-30%→3% PT resolution

■ Tk + muon stub: ~99% efficient for Pт >5 GeV

<u>Topological muons</u>, e.g. 'Muon-jet' with 3 objects

■ Better acceptance at low PT & forward region $\tau \rightarrow 3\mu$ decays: ~5-10 x better than Phase-1 trigger

All GMT objects are sent to the global trigger (GT)

to issue the L1 decision based on the menu of (muon) algorithms

HL-LHC Endcap Muon Trigger Prospects

Preliminary hardware demonstration

Endcap muon trigger demonstrator setup

We have tests already performed with Virtex 9 Ultrascale+ (VU9P) FPGA

- EMTF++ algorithm
 - Phase-1 track-building firmware
 - NN firmware is written in Vivado HLS via HLS4ML software
 - Resources will be able to accommodate prompt & displaced muons
- Tk + EMTF++ correlator
 - Firmware implementation is validated with simulated muons
 - Resource usage is modest & dominated by look-up tables

Summary and Outlook

- Broad physics phase space will be explored given the Phase-2 upgrades & the unprecedented large dataset
- The new and improved endcap muon trigger objects will enable a large part of the HL-LHC program
- First hardware demonstrators shows the feasibility of the new endcap muon algorithms
- A rich software, firmware and hardware program is on-going

References:

- [1] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors, CERN-LHCC-2017-012 (2017)
- [2] CMS Collaboration, The Phase-2 Upgrade of the CMS Level-1 Trigger, <u>CERN-LHCC-2020-004</u> (2020)

Performing precision measurements and new physics searches at the HL-LHC with the upgraded CMS Level-1 Trigger

Emily MacDonald on behalf of the CMS collaboration

University of Colorado Boulder e.macdonald@cern.ch

CMS Phase-2 Trigger

- Upgrades to the Level-1 (L1) trigger
 - Improved electronics to handle the increased pileup (PU)
 - Add tracking to L1 trigger
 - Increase total latency 12.5 μ s
 - Allows use of information from the tracker and high-granularity calorimeter information
 - Allows more time for algorithms, including higherlevel object reconstruction and identification
 - Improved algorithms
 - More information (increase from 2 TB/s to 63 TB/s)
 - Potential for particle-flow (global event) reconstruction
 - Potential for machine learning based approaches

Maintain physics performance from Run 2

- Improved algorithms achieve lower rates, even in a more challenging PU environment
- Increase physics reach
 - Tracking at Level-1, particle-flow algorithms, and machine learning based approaches can reach a broader spectrum of physics analyses

The CMS L1 Phase-2 upgraded trigger design

Reduced trigger thresholds

- L1 trigger menu can maintain the physics performance from the current running (Run 2), even at 200 PU
- Many of the upgraded trigger algorithms achieve lower rates
 - Releases bandwidth to allow for some lower thresholds
 - Choose thresholds to increase the acceptance for key physics signals (i.e. energy sums, lepton p_T, jets)

Use of tracking at L1 drastically reduces the p_T thresholds for electrons and muons

Use of particle-flow algorithms reduces the threshold for missing transverse energy by almost 200 GeV

New physics searches

Displaced jets:

- An extension of the L1 track-finding, clustered tracks without a beamspot constraint
- Provides a new handle to trigger on Beyond the Standard Model (BSM) physics, such as exotic decays of the SM Higgs

Particle-flow and machine learning:

- The τ trigger algorithm is based on a particle-flow approach combined with a dedicated neural network discriminator
- Improved energy resolution of hadronic objects provided by particle-flow reconstruction is beneficial to the development of triggers targeting specific signatures such as VBF

A deep neural net outperforms all cutbased algorithms for an inclusive VBF H → bb̄ trigger

L1 Trigger Algorithms at CMS for the HL-LHC¹ e/ γ , Jets, E_T^{miss} and τ_h

Jack Li (Northeastern University)

On behalf of the CMS collaboration

ICHEP, 28 Jul-6 Aug, 2020

¹Based on CMS-TDR-021

Electrons and Photons

- Calorimeter upgrades
- · Crystal granularity in barrel
- New high-granularity calorimeter (HGCAL) in endcap
- e/ γ reconstruction in barrel
- Seeding+clustering+ ID&isolation

- e/γ reconstruction in endcap
- 3D shower information provided by HGCAL
- BDT is implemented
- High background rejection & signal efficiency

- I 1 tracks
- Matched with calorimeter objects
- Track isolation

	calorimeter only	
30GeV	97.5%	84.5%
40GeV	98.7%	88.0%

Table 1: Single electron efficiency in the barrel

Rate	calorimeter only	
30GeV	78.2 kHz	19.0 kHz
40GeV	25.5 kHz	8.3 kHz

Table 2: Trigger rate of the barrel L1 objects

Summary

- Improved efficiency and resolution due to higher granularity
- Reduced trigger rate due to L1 tracks

Jets and Energy Sums

- · Track-only jet and MET
 - Relies on track purity
- Reduces the threshold significantly (below)

- Particle-flow (PF) based
- Jets
- The performance is close to that of the offline AK4 algorihtm when using PUPPI inputs
- MET
- Takes PUPPI inputs

Calorimeter-only jets (right)

Summary

- Improved resolution and efficiency for PF-based algorithm
- Standalone algorithms add robustness

Hadronic au

- Calorimeter-only τ_h
- Similar to calorimeter based jet finding
- Possible improvements in the HGCAL with BDT
- Track+e/ $\gamma \tau_h$
- Associates e/γ clusters with tracks
- Simple yet efficient
- PF-based τ_h
- Neural network + PUPPI inputs
- More complicated firmware
- Capable of identifying a τ_h every 25 ns

Comparison of different algorithms (right)

Summary

 Different algorithms are complementary to each other

Energy calibration with BDT regression (Calo-only)

• Track $+e/\gamma$

The Particle Flow Algorithm in the Phase II Upgrade of the CMS Level-1 Trigger

Dylan Rankin (MIT)
On behalf of the CMS Collaboration

ICHEP 2020

July 29th, 2020

Introduction

- Phase II CMS upgrade adds information from tracking detector to Level-1 trigger
- Enables (among others):
 - Particle flow (PF)
 - Pile-Up Per Particle Identification (PUPPI)
- Critical to maintaining performance in harsh HL-HLC environment, high pileup
- PF + PUPPI requirements:
 - Run in ~ 2 μs
 - Process events at 40 MHz

ICHEP 2020 2

Implementation and Testing

- Design separated into multiple blocks to handle inputs from detectors with different rates and schemes
 - Layer-1
 - Partition inputs into regions (regionizer)
 - Particle flow
 - PUPPI
 - Layer-2
 - Object reconstruction
- Significant work in balancing performance and FPGA resources/latency
- Implemented using High Level Synthesis
- Tested on prototype boards with targeted Virtex Ultrascale 9+ (VU9P) FPGA, 25 Gbps GTY links
 - Perfect agreement between HW and emulation

Performance

14 TeV, 200 PU

100

- Compared to calo- or track-only:
 - Improved jet response and resolution with PF
 - Sharper and earlier turn-ons possible with PUPPI across trigger landscape (MET, τ_h, H_T)
- Major gains in signal acceptance

300

400

Measurement of Liquid Scintillator Nonlinearity

Tadeáš Dohnal¹, Vít Vorobel¹, Tomáš Tměj¹, Viktor Pěč²

¹Charles University, Czech Republic ²University of Sheffield, United Kingdom

Liquid Scintillator Nonlinearity

 In liquid scintillators, the dependence of the amount of scintillation light on the energy deposited by the incident particle is not exactly linear

Example for electron:

 Knowledge of nonlinearity is important for reactor neutrino experiments that commonly use liquid scintillators

Experimental Setup

- Gamma of known energy scatters in the liquid scintillator
- Recoiled electron energy measured in the liquid scintillator
- Scattered gamma energy measured by HPGe detector
- Results are compared

Data Analysis & Preliminary Results

- Several samples measured, liquid scintillator nonlinearity observed in all of them
- There are many detector-induced effects which need to be addressed (detectors' own nonlinear responses, temporal instability, light collection & PMT efficiency nonuniformity etc.)
- Example of results:

The Mu3e Experiment Searching for the Lepton Flavour Violating Decay $\mu^+ \rightarrow e^+ \, e^-$

Afaf Wasili* on behalf of the Mu3e Collaboration**

*) University of Liverpool, Afaf.Wasili@Liverpool.ac.uk

**) Paul Scherrer Institute (PSI), Uni Bristol, Uni Geneva, Uni Heidelberg, KIT Karlsruhe, Uni Liverpool, UCL London, JGU Mainz, Uni

The Mu3e Experiment @ PSI

Motivation & Challenges

Search for Lepton Flavour Violation:

Decay: $\mu^+ \rightarrow e^+ e^+ e^-$

- Negligible in Standard Model ($Br < 10^{-54}$)
- Can be enhanced in New Physics: (SUSY, leptoquarks, etc.), any observed decay will point to NP
- Current status: $Br < 10^{-12}$ (SINDRUM) at 90% CL
- Mu3e Phase I: Aiming for O(10-15) sensitivity at existing π E5 beamline: 10⁸ μ /s
- Mu3e Phase II: Aiming for O(10-16) sensitivity at a new high-intensity muon beamline (HiMB): >10 $^9 \mu/s$

Muon decay BSM (SUSY)

Signal:

- Three tracks: $\mu^+ \rightarrow e^+ e^+ e^-$
- Decay at rest P_e < 53 MeV/c
- Common vertex
- Coincide in time $\Sigma P = 0$, $\Sigma E = m_u$

Background:

- Internal conversion background (IC BG): $\mu^+ \rightarrow e^+ e^+ e^- v^+ v^-$ (suppressed by good momentum resolution)
- Accidental background (Acc. BG): Michel $\mu^+ \rightarrow e^+ \nu^+ \nu^$ with e +e -, etc (suppressed by good time and vertex resolution)

Simulation and Track/Vertex Reconstruction of the Mu3e Detector

Test-beam Data Acquisition System and Characterisation of HV-MAPS

