Spontaneous chiral symmetry breaking in holographic QCD

Alfonso Ballon Bayona

In collaboration with Luis A. H. Mamani (UEMASUL) and Diego M. Rodrigues (IFT-UNESP)

Reference: 2107.10983 [hep-ph] (accepted in Phys.Rev.D)

VII ONTQC

December 8-10 2021

Summary

- 1. Introduction
- 2. The AdS/CFT correspondence and holographic QCD
- 3. Chiral symmetry breaking in holographic QCD
- 4. Spontaneous chiral symmetry breaking in soft wall models
- 5. Conclusions

1. Introduction

Quantum Chromodynamics (QCD): The theory of strong interactions

$$L_{QCD} = \overline{\psi}_f \left[i \gamma^{\mu} D_{\mu} - m_f \right] \psi_f - \frac{1}{2} \operatorname{Tr} \left[F_{\mu\nu} F^{\mu\nu} \right]$$
$$D_{\mu} = \partial_{\mu} - i g A_{\mu} , \quad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - i g \left[A_{\mu}, A_{\nu} \right]$$

Quarks are Dirac spinors ψ_f

Gluons are non-Abelian gauge fields $A_{\mu} = A^a_{\mu}T^a$

QCD is invariant under the local SU(3) colour symmetry

Quarks and gluons are the elementary particles of the standard model

Asymptotic freedom and confinement

The QCD beta function

1- loop result

$$\beta_g \equiv \frac{dg}{d \log \mu} = -\frac{g^3}{(4\pi)^2} \left[\frac{11}{3} N_c - \frac{2}{3} N_f \right]$$

$$N_f = 6 \in N_C = 3 \rightarrow \beta_g < 0$$

Asymptotic freedom in the UV and confinement in the IR

Bethke hep-ex/0606035

Non-perturbative approaches to QCD

 $\left(\frac{\delta S[\phi]}{\delta \phi}\right)$

- Lattice QCD:

Wilson 1974

- Dyson-Schwinger equations:

Dyson 1949, Schwinger 1951

- Other approaches: Chiral lagrangians, Nambu-Jona-Lasinio model, QCD sum rules, RG flow, ...

 $\left|_{\phi=\frac{\delta}{\delta I}}-J\right| Z[J]=0$

Hadrons and string theory

The spectrum of **baryons and mesons** organize approximately into **Regge trajectories**

 $J = J_0 + \alpha' M^2$

Chew & Frautschi 1962

J: spin, M: mass α' : Regge slope

This can be obtained from **1d** objects (**strings**)

Nambu, Nielsen & Susskind 1969-1970

Chew-Frautschi Plot

(mass)²

Angular Momentur

$$A(s,t) = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s) - \alpha(t))}$$

This simple amplitude satisfies the s-t duality and has the asymptotic behaviour $s^{J(t)}$ in the Regge limit , expected for hadronic scattering.

This amplitude is obtained from scattering of strings Veneziano & many others 1968-1970

Yang-Mills/string duality

Feynman diagrams of $SU(N_c)$ gauge theories in the large N_c limit can be thought in terms of string theory

't Hooft 1974

2. The AdS/CFT correspondence and holographic QCD

D-branes relate the physics of open strings with the physics of closed strings *Polchinski 1995*

AdS/CFT is a concrete realization of the Yang-Mills/string duality

 $SU(N_c)$ theory in the large N_c limit with conformal symmetry in d dimensions

Gauge/gravity duality

In the regime $\lambda \gg 1$ string theory becomes a classical gravitational theory

E.g: **4-d** N = 4 super Yang-Mills

supergravity IIB in $AdS_5 imes S^5$

Maldacena 1997

space in d+1 dimensions

string theory in Anti-de-Sitter

The AdS/CFT dictionary

Conformal symmetry group SO(2,4) becomes the AdS_5 isometry group

AdS₅ in Poincaré coordinates

$$ds^2 = \frac{R^2}{z^2} [dz^2 - dt^2 + d\overline{x}^2]$$

Scale transformation $x^{\mu} \rightarrow \lambda x^{\mu}$, $z \rightarrow z \lambda$

Fields $\phi_{...}$ in AdS_5 couple on the **boundary** with operators $O_{...}$ of the CFT_4

 CFT_4 partition function \leftrightarrow gravitational path integral in AdS_5

 $Z_{CFT}[\phi^{0}_{...},g^{0}_{\mu\nu}] = Z_{AdS}[\phi_{...},g_{\mu\nu}]$

Gubser-Klebanov-Polyakov 1998, Witten 1998

Holographic QCD

Top-down approach

E.g. Klebanov-Witten (1998), Klebanov-Strassler (2000), Maldacena-Nunez (2000), Sakai-Sugimoto (2004), Kuperstein-Sonnenschein (2004)

Bottom-up approach

E.g. Polchinski-Strassler (2000), Erlich-Katz-Son-Stephanov (2005), Karch-Katz-Son-Stephanov (2006), Gursoy-Kiritsis-Nitti (2007), Gubser-Nellore (2008)

Some progress in holographic QCD

<u>Confinement:</u> Wilson loop described by a string world-sheet.

$$\langle W(C) \rangle = Z_{string}(\partial \Sigma = C)$$

 $ds^2 = g_{tt}(z)dt^2 + g_{xx}(z)dx_i^2 + g_{zz}(z)dz^2$ satisfies the confinement criterion $V_{\overline{Q}Q}(L \gg 1) = \sigma L$ when $f = \sqrt{g_{tt}g_{xx}}$ has a minimum $\neq 0$

Kinar, Schreiber and Sonnenschein 1998

Chiral symmetry breaking

$$J_{L/R}^{\mu,a} = \overline{q}_{L/R} \gamma^{\mu} T^{a} q_{L/R} \qquad \longleftrightarrow \qquad A_{L/R}^{m,a} , \quad \text{where } m = (z,\mu).$$

$$\overline{q} q \qquad \longleftrightarrow \qquad X$$

Global symmetry \qquad \longleftrightarrow \qquad Gauge symmetry

Erlich, Katz, Son and Stephanov & Da Rold and Pomarol 2005

Finite temperature AdS/CFT and holographic QCD

4d conformal fluid dual to a 5d AdS black hole

$$T^{\mu\nu} = \alpha T^4 [\eta^{\mu\nu} + 4u^{\mu}u^{\nu}] - 2\eta \sigma^{\mu\nu} + \cdots$$

Universal prediction:

$$\eta/s = 1/(4\pi)$$

 η : shear viscosity, **s**: entropy density.

Policastro-Son-Starinets 2001, Kovtun-Son-Starinets 2004

Non-linear fluid/gravity correspondence: Bhattacharyya-Hubeny-Minwalla-Rangamani 2007

Witten 1998, Herzog 2006, B.B-Boschi-Filho-Braga-Pando Zayas 2007, Gursoy-Kiritsis-Mazzanti-Nitti 2008

Non-conformal fluids

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} + (P - \zeta \theta) [\eta^{\mu\nu} + u^{\mu} u^{\nu}] - 2\eta \sigma^{\mu\nu} + \cdots$$

Gubser-Nellore-Pufu-Rocha 2008, Gursoy-Kiritsis-Michalogiorgakis-Nitti 2008

3. Chiral symmetry breaking in holographic QCD

Chiral symmetry breaking in the hard wall model

Erlich, Katz, Son and Stephanov & Da Rold and Pomarol 2005

5d background: AdS ending in an IR hard wall

$$ds^2 = \frac{1}{z^2} \left[-dt^2 + dx_i^2 + dz^2 \right]$$
 , $0 < z \le z_0$

This background satisfies the **confinement** criterion.

Adding flavour

$$S = -\int d^5x \sqrt{-g} \operatorname{Tr} \{ |D_m X|^2 + m_X^2 |X|^2 + \frac{1}{4g_5^2} [F_{mn}^{(L)\,2} + F_{mn}^{(R)\,2}] \}$$

X: tachyon $A_m^{L/R}$: non-Abelian gauge fields

$$F_{mn}^{(L/R)} = \partial_m A_n^{(L/R)} - \partial_n A_m^{(L/R)} - i[A_m^{(L/R)}, A_n^{(L/R)}],$$

$$D_m X = \partial_m X - iA_m^{(L)} X + i X A_m^{(R)}$$

Map between 5d fields and 4d operators

$$A_m^{(L/R)} \leftrightarrow J_\mu^{(L/R)}$$
$$X \leftrightarrow \overline{q}_R q_L$$

 $m_X^2 = \Delta(\Delta - 4) = -3$ (tachyonic field) Focus on light quarks: $N_f = 2$

Classical background

$$2X_0(z) = v(z) \mathbf{1}_{2 imes 2}$$
 , $A_m^{(L/R)} = \mathbf{0}$

Tachyon field equation

$$[z^2\partial_z^2 - 3 z\partial_z + 3]v(z) = 0$$

Exact solution

$$v(z) = c_1 z + c_3 z^3$$

Coefficients c_1 and c_3 related to the quark mass m_q and chiral condensate $\Sigma = \langle \overline{q}q \rangle$. c_3 fixed by boundary conditions. This is different from QCD w/ Σ is generated dynamically 5d background: AdS and a scalar field Φ (the dilaton)

$$ds^2 = \frac{1}{z^2} \left[-dt^2 + dx_i^2 + dz^2 \right]$$
 , $\Phi(z) = \phi_{\infty} z^2$

 $\Phi(z)$ responsible for **conformal symmetry breaking**

Adding flavour

$$S = -\int d^5x \sqrt{-g} \, e^{-\Phi} \operatorname{Tr} \left\{ \, |D_m X|^2 + m_X^2 \, |X|^2 + \frac{1}{4g_5^2} [F_{mn}^{(L)\,2} + F_{mn}^{(R)\,2}] \right\}$$

Tachyon field equation

$$[z^2\partial_z^2 - (3+2\phi_{\infty}z^2) z\partial_z + 3]v(z) = 0$$

Exact analytic solution

$$v(z) = \frac{\sqrt{\pi}}{2} c_1 z \, U(\frac{1}{2}, 0; \phi_{\infty} z^2)$$

Near the boundary,

$v_{UV}(z) = c_1 z + d_3(c_1) \ln z + c_3(c_1) z^3 + \cdots$

w/ d_3 and c_3 are **proportional** to $c_1 \longrightarrow \sigma_q \propto m_q$

The soft wall model leads to explicit chiral symmetry breaking !

Non-linear extension of the soft wall model

B-B and Mamani 2020

$$S = -\int d^5x \sqrt{-g} e^{-\Phi} \operatorname{Tr} \left\{ |D_m X|^2 + m_X^2 |X|^2 + \lambda |X|^4 + \frac{1}{4g_5^2} [F_{mn}^{(L) 2} + F_{mn}^{(R) 2}] \right\}$$

The tachyon field equation becomes

$$[z^2\partial_z^2 - (3+2\phi_\infty z^2) z\partial_z + 3]v(z) - \frac{\lambda}{2} v^3(z) = 0$$

Far from the boundary, the regular solution takes the form

 $v_{IR}(z) = c_0 + c_2(c_0)z^{-2} + \cdots$

Solutions for v(z) found **numerically**. The UV coefficients c_1 and c_3 depend on a single parameter!

The tachyon profile goes from zero at small z (UV) to a constant at large z (IR)

The chiral condensate is a nonlinear function of the quark mass

Solid (dashed) lines correspond to $\lambda > 0$ ($\lambda < 0$)

However, chiral symmetry breaking remains explicit in the chiral limit

4. Spontaneous chiral symmetry breaking in soft wall models

B-B, Mamani and Rodrigues 2021

Non-minimal dilaton couplings

$$S = -\int d^5 x \sqrt{-g} \operatorname{Tr}\{e^{-a(\Phi)} \left[|D_m X|^2 + V(|X|) \right] + \frac{e^{-b(\Phi)}}{4g_5^2} \left[F_{mn}^{(L) 2} + F_{mn}^{(R) 2} \right] \}$$

with
$$\Phi = oldsymbol{\phi}_{\infty} z^2$$
 and $V(|X|) = m_X^2 \, X^2 + \lambda \, X^4$

Tachyon field equation becomes

$$\left[z^2\partial_z^2-(3+z\,a')z\partial_z-m_X^2\right]v-\frac{\lambda}{2}v^3=0$$

Two possibilities for the gauge coupling:

$$b(\Phi) = a(\Phi)$$
Models of type A $b(\Phi) = \Phi$ Models of type B

Non-minimal dilaton couplings that lead to spontaneous chiral symmetry breaking

Blue, red and green correspond to $a_0 = 1$, $a_0 = 3$ and $a_0 = 5$

Common property: the **coupling becomes negative** near the boundary

Compatible with previous proposals *Teramond and Brodsky 2009, Zuo 2009, Chelabi et al 2015*

Violation of the Breitenlohner-Freedman (BF) bound

Consider a scalar perturbation S(x, z) around the trivial vacuum X = 0

It satisfies the linear differential equation

$$[\partial_z + 3A' - a']\partial_z S + \Box S - e^{2A}m_X^2 S = 0$$

where $A = -\ln z$

Redefining the field as $S = e^{a/2}\overline{S}$, the differential equation takes the AdS form

$$[\partial_z + 3A']\partial_z \overline{S} + \Box \overline{S} - e^{2A} \overline{m}_X^2(z) \overline{S} = 0$$

with a 5d running mass

$$\overline{m}_X^2(z) = m_X^2 - e^{2A} \left[\frac{a''}{2} + \frac{a'}{2} \left(3A' - \frac{a'}{2}\right)\right]$$

The non-minimal dilaton couplings induce the **violation of the BF bound**

the trivial vacuum X = 0 is **unstable!**

The stable vacuum X(z) found solving (numerically) the tachyon differential equation

The chiral condensate in the chiral limit

A non-zero chiral condensate emerges
above some critical value a^c₀
→ Spontaneous breaking of
chiral symmetry!

<u>The chiral condensate as a function of the quark mass (fixed a_0)</u>

Blue curve $(a_0 < a_0^c)$ Red curve $(a_0 > a_0^c)$

Meson spectrum

Fixing the parameters:

Parameter	Model IA	Model IB	Model IIA	Model IIB
a_0	3.5	3.5	6.5	6.5
ϕ_∞	$(0.388\mathrm{GeV})^2$	$(0.388 {\rm GeV})^2$	$(0.388 {\rm GeV})^2$	$(0.388\mathrm{GeV})^2$
λ	160	380	60	413

Masses of vector mesons

(compared with experimental data)

n	Model IA	Model IB	Model IIA	Model IIB	GKK [13]	ρ experimental [63]
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$		
0	327	776	344	776	475	776 ± 1
1	1280	1097	1208	1097	1129	1282 ± 37
2	1486	1344	1439	1344	1429	1465 ± 25
3	1662	1552	1632	1552	1674	1720 ± 20
4	1823	1735	1802	1735	1884	1909 ± 30
5	2116	1901	1958	1901	2072	2149 ± 17
6	2250	2053	2104	2053	2243	2265 ± 40

Evolution of the **scalar meson masses** with the quark mass

Masses of scalar mesons for fixed quark mass (compared with experimental data)

n	Model IA	Model IB	Model IIA	Model IIB	BM [51]	f_0 experimental [63]
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$		
0	526	519	539	546	980	990 ± 20
1	1351	1349	1348	1350	1246	1350 ± 150
2	1600	1599	1540	1541	1466	1505 ± 6
3	1755	1755	1718	1719	1657	1724 ± 7
4	1904	1904	1881	1881	1829	1992 ± 16
5	2048	2048	2032	2032	1986	2103 ± 8
6	2185	2185	2174	2174	2132	2314 ± 25
7	2315	2315	2313	2313	2268	

Evolution of the **axial-vector meson masses** with the quark mass

Masses of axial-vector mesons for fixed quark mass (compared with experimental data)

n	Model IA	Model IB	Model IIA	Model IIB	GKK [13]	a_1 experimental [63]
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$		
0	409	1098	525	1105	1185	1230 ± 40
1	1296	1231	1242	1261	1591	1647 ± 22
2	1494	1423	1463	1431	1900	1930^{+30}_{-70}
3	1669	1625	1651	1625	2101	2096 ± 122
4	1828	1797	1817	1798	2279	2270_{-40}^{+55}
5	1978	1950	1970	1954		
6	2316	2092	2114	2100		

Evolution of the **pseudoscalar meson masses** with the quark mass

The mass of the fundamental states go to zero in the chiral limit (Nambu-Goldstone bosons)

Masses of pseudoscalar mesons for fixed quark mass (compared with experimental data)

\overline{n}	Model IA	Model IB	Model IIA	Model IIB	KBK [64]	π experimental [63]
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$		
0	140	140	140	140	144	140
1	1301	1539	1338	1675	1557	1300 ± 100
2	1582	1626	1533	1819	1887	1816 ± 14
3	1739	1794	1713	1945	2090	2070
4	1890	1945	1877	2183	2270	2360
5	2036	2083	2028	2301	2434	
6	2175	2212	2170	2422	2586	

The quark masses were fixed as $m_q = 9$ MeV (model IA), $m_q = 4.7$ MeV (model IB), $m_q = 9.8$ MeV (model IIA) and $m_q = 26.8$ MeV (model IIB)

Decay constants

Decay constants of vector mesons

(compared with experimental data)

	Model IA	Model IB	Model IIA	Model IIB	SW [1]	Experimental [65]
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$		$(F_{V^a} = g_\rho)$
$F_{V_0}^{1/2}$	235	260	226	260	261	346.2 ± 1.4
$F_{V_1}^{1/2}$	357	310	265	310		433 ± 13
$F_{V_2}^{1/2}$	337	343	314	343		

Decay constants of scalar mesons for fixed quark mass (compared with experimental data)

	Model IA	Model IB	Model IIA	Model IIB	SW	QCD
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$	[1]	Results [66]
$F_{s_0}^{1/2}$	532.7	533.2	470.4	426.6	420	425.3
$F_{s_1}^{1/2}$	779.7	780.1	561.1	465.7	499	
$F_{s_2}^{1/2}$	582.5	582.5	595.8	544.5	552	

Evolution of the **axial-vector meson decay constants** with the quark mass

Evolution of the **pseudoscalar meson decay constants** with the quark mass

Decay constants of pseudoscalar mesons for fixed quark mass

(compared with experimental data)

	Model IA	Model IB	Model IIA	Model IIB	Experimental
	(a = b)	$(a \neq b)$	(a = b)	$(a \neq b)$	$(f_{\pi^+}/\sqrt{2})$ [63]
f_{π_0}	104.3	60.9	118.3	138.68	92.1 ± 0.8
f_{π_1}	2.05	0.95	3.94	1.04	
f_{π_2}	0.79	0.42	3.37	2.97	

The Gell-Mann-Oakes-Renner (GOR) relation

The fundamental states in the pseudoscalar sector satisfy the **GOR** relation $f_\pi^2 m_\pi^2 = 2 m_a \sigma$

Conclusions

- A non-linear extension of the soft wall model with non-minimal dilaton couplings allows for the description of spontaneous chiral symmetry breaking in the chiral limit.
- Pions behave as Nambu-Goldstone bosons in the chiral limit, as expected in QCD
- Meson spectrum at physical values of the quark mass seems compatible with experimental data
- Transition to the regime of heavy quarks looks promising but needs more ingredients
- We have followed a bottom-up approach. More sophisticated top-down models built from string theory provide confinement and spontaneous chiral symmetry breaking . There are, however, plenty of d.o.f not present in QCD

Next steps

- Describe not only chiral symmetry breaking but also confinement in a consistent way (Einstein-dilaton-tachyon holographic QCD).
- Turn on the temperature, quark density, magnetic field, etc.