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QED	vs QCD
Photons are	neutral

There are	no	photon self-interaction

Gluons have color	charge

There are	gluon self-interaction



QED	vs QCD
Quantum	fluctuations:	coupling	depends	on	the	scale.

1fm=10-15	m

Asymptotic freedom
Nobel	Prize 2004

Gross,	Politzer	&	Wilczec



Nonperturbative QCD
For	a	quantitative understanding of	hadron physics,	we	need
nonperturbative methods to study QCD	at low energies.

• Hadron mass spectrum

Pion	mass ~	140	MeV
Rho mass ~		770	MeV
Nucleon mass ~		1	GeV

Perturbative QCD:	quarks	u and	d	~	5MeV

• Structure of Hadrons:	Hadron Tomography

• Confinement: Experimentally,	only color-singlet hadrons are	observed
No	free quarks	have been observed

Conjecture: Collored objects are	confined inside the	hadrons



Nonperturbative approachs to QCD
• Lattice QCD

Simulate QCD	action

Discretize (Euclidean)	space-time

Use	Monte	Carlo	methods to sample path	integrals
Equivalent to a	StatisticalMechanics problem

Finite lattice size and	spacing effects

Need extrapolationmethods for	the	continuum limit

Requires massive computational power.	

Generating functional

Wick-rotation:



Nonperturbative approachs to QCD
• Schwinger-Dyson Equations

Generating functional

Field	equations can be derived from the	generating functional

EoM form infinite hierarchy of	coupled
integral	equations for	the	Green	
functions

Reduce to pQCD in	weak coupling	limit

Truncation is	needed

• QCD	in	Coulomb	Gauge

L. M.	Abreu,	F. M.	da	Costa	Júnior,	and A. G.	Favero,	PRD102,	034002,	2020;	PRD	101,	116016,	2020
Meson 2– and Bc spectrum.



Challenge:	Minkowski Calculations

Most non-perturbative methods are	formulated in	Euclidean space

Wick Rotation:We have to be care with the	
presence of	singularities.

Minkowski solutions:
Bethe-Salpeter
Schwinger-Dyson

It	is not easy to connect the Euclidean calculations with
Structure functions defined in	Minkowski Space.



Schwinger-Dyson equation in Rainbow ladder truncation
Minkowski space

Hadron Physics QCD Quark DSE Mesons Form factors Minkowski DSE BSE Conclusion

Nonperturbative methods

I Lattice QCD

I Dyson–Schwinger Equations

I Light-Front QCD

I AdS/QCD holography

I Stochastic quantization
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Dirac’s forms of relativistic dynamics [Dirac, Rev.Mod.Phys. ’49]

In relativity, t = x0 is not the only choice of “time”, which dictates the
direction of the dynamical evolution.

instant form front form point form

t = x0 x+ , x0 + x3 ⌧ ,
p
t2 � ~x2 � a2

H = P 0 P� , P 0 � P 3 Pµ
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z
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P± , P 0 ± P 3, ~P? , (P 1, P 2), x± , x0 ± x3, ~x? , (x1, x2), Ei = M+i,
E+ = M+�, F i = M�i, Ki = M0i, J i = 1
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kinematical
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relation

P. Maris (ISU & ITA) Euclidean and Minkowski DSEs UNICSUL São Paulo, Oct 2018 7 / 49

The rainbow ladder Schwinger-Dyson equation in Minkowski space is

The massive gauge boson is given by

The dressed fermion propagator is 

In	collaboration	with	Duarte,	Frederico,	Ydrefors

QED-like, bare vertices, massive vector boson, Pauli-Villars regulator

⇠ = 0 (Landau Gauge)& ⇠ = 1 (Feynman Gauge)
<latexit sha1_base64="rPBjJyXysqyWqJlfSWHvs2p8Fz0="></latexit>

Also discussed in V. Sauli, JHEP 0302, 001 (2003) 



Fermion Schwinger-Dyson equation (Rainbow ladder)

Self-Energies Integral representations

Fermion propagator – Integral representation
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I. FERMION SELF ENERGY AND PROPAGATOR

We will write the densities related to self energy in terms of the spectral ones. The dressed fermion propagator is

Sf (k) =
1

/k �m0 + /kAf (k2)�Bf (k2) + i✏

(1)

and the self energy are given by the integral representation
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A. Fermion Rainbow SD Equation
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Vector and scalar spectral densities 

Vector and scalar Self-Energy densities 



Fermion Schwinger-Dyson equation (Rainbow ladder)



Phenomenologial Model (Recent Developments)

We can calibrate the model to reproduce Lattice Data for M(p2)

In	collaboration	with	Duarte,	Frederico,	Ydrefors

The next step is to use this solution to obtain the 
Fermion Anti-Fermion bound state

Chiral Symmetry Breaking



We start from the four-point Green function

which is a solution of the integral equation

Bound State



BSA in configuration space:

Close to the bound-state pole we obtain the BSE

The same Kernel of the four-point Green function

Bethe-Salpeter Equation

Challenge: To solve the BSE in Minkowski space



•Bethe-Salpeter equation(     ) :

Quark-gluon vertex

Quark-antiquark bound state - Pion

where we use: i) bare propagators for the quarks and gluons; 
ii) ladder approximation

We consider only one of the Longitudinal components of the QGV

We set the value of the scale parameter (~300 MeV) from the combined analysis of 
Lattice simulations , the Quark-Gap Equation and Slanov-Taylor identity.

Oliveira,  WP,  Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 & 
Oliveira, Frederico, WP, EPJC 80 (2020) 484 



• Nakanishi representation: Generalization of the Källén-Lehmman
integral representation (two point functions) for n-point functions. 
The denominator carryies the overall analytical behavior in 
Minkowski space.

• Kusaka and Williams, PRD 51 7026 (1995); Karmanov and Carbonell, EPJA 27 1 
(2006), EPJA 27 11 (2006), EPJA27 11 (2010); 

• Frederico, Salme and Viviani PRD 85 036009 (2012), PRD 89, 016010 (2014).
• WP, Frederico, Salme and Viviani PRD 94 071901 (2016).
• WP, Frederico, Salme, Viviani and Pimentel EPJC 77 764 (2017).
• WP, Ydrefors, A. Nogueira, Frederico and Salme PRD 103 014002 (2021).
• Ydrefors, WP, Nogueira, Frederico and Salme PLB 820, 136494 (2021).

Bethe-Salpeter amplitude

BSE in Minkowski space with NIR

Nakanishi	Integral	Representation



NIR	for	fermion-antifermion	 Bound State

Using the NIR for the scalar functions

System of coupled integral equations

BSA for a quark-antiquark bound state



Light-Front variables

LF amplitudes

LF-time

Projecting BSE	onto the	LF	hyper-plane	 x+=0

Within the LF framework, the valence component is 
obtained by integrating the BSA on k-.

The coupled equation system is 

The Kernel contains singular contributions



We can single out the singular contributions

For two-fermion BSE

with j=1,2,3 and in the worst case

Then one can not close the arc at the infinity .
The severity of the singularities (power j), does not depend on the Kernel

We calculate the singular contribution using 

Yan PRD 7 (1973) 1780

NIR	for	two-fermions
WP, Frederico, Salmè, Viviani, PRD94 (2016) 071901



Numerical Method
Basis expansion for	the	Nakanishi	weight function

Gegenbauer polynomials

Laguerre	polynomials

We	obtain	a	discrete generalized eigenvalue problem

We	used ~	44	Laguerre	polynomials	and	44	Gegenbauer



Normalization
In order to calculate hadronic properties, we need to properly normalize the 
BSA

Using the BSA expansion and performing the Dirac traces, we have

From the NIR, we obtain



LF	Momentum	Distributions

The fermionic field on the null-plane is given by: 

where

Hence,    and b are the fermion creation/annihilation operators

The LF valence amplitude is the Fock component with the lowest 
number of constituents



LF	Momentum	Distributions
LF valence amplitude in terms of BS amplitude is:

Anti-aligned configuration:

Aligned configuration:

with the LF amplitudes given by 

which can be decomposed into two spin contributions:



Valence	Probability

The Valence momentum distribution density is

We can define the Valence Probability as

where

The probability to find the valence component in the bound state

We decompose in terms of the aligned and anti-aligned LFWF:



Quantitative results:	Static properties
WP,	 Ydrefors,	 A.	Nogueira,	 Frederico	 and	Salme	PRD	103 014002	 (2021).

The set VIII reproduces the pion decay constant

The contributions beyond the valence component are important, ~30%



Valence	LF-Momentum	Distributions
WP,	 Ydrefors,	 A.	Nogueira,	 Frederico	 and	Salme	PRD 103	 014002	 (2021).



Pion	image	on	the	null-plane

The probability distribution of the quarks inside the pion, on the light-front, is 
evaluated in the space given by the Cartesian product of the  Ioffe-time and 
the plane spanned by the transverse coordinates.

Our goal is to use the configuration space in order to have a more 
detailed information of the space-time structure of the hadrons.

The Ioffe-time is useful for studying the relative importance of short 
and long light-like distances. It is defined as:



Pion	image	on	the	null-plane
WP,	 Ydrefors,	 A.	Nogueira,	 Frederico	 and	Salme	PRD 103	 014002	 (2021).

The space-time structure of the pion in terms of Ioffe-time                          
and the transverse coordinates {bx, by}

We perform a Fourier transform of the valence wf

3D imaging of the Pion



Covariant	Electromagnetic	 Form Factor

Adopting the Impulse aproximation (bare photon vertex), we have

After using the NIR and computing the traces, one obtains

Among the pion observables, the electromagnetic form factor plays a relevant 
role for accessing the inner pion structure, since it is related to the charge 
density in the so-called impact parameter space.



Valence	Electromagnetic	 Form	Factors
The Valence contribution to the FF is obtained from the matrix elements
of the component 

where

Total FF (Drell-Yan Frame): 

where represents the contribution of the n-th Fock component 

Asymptotic behavior:



Results:	 pion charge	radius

Pion charge radius and its decomposition in valence and non valence contributions.

where

The set I is in fair agreement with the PDG value: 

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).



Form	factor	vs	Q2

Good agreement with experimental data (black curve).
For high Q2 we obtain the valence dominance (dashed black curve)
Our results recover the pQCD for large Q2 – Blue curve vs Black curve

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).



Phenomenologial Model (Recent Developments)
In	collaboration	with	Duarte,	Frederico,	Ydrefors



• We present a method for solving the fermionic BSE in Minkowski 
space and how to treat the expected singularities.

• We obtain the Valence Probability, the Momentum Distributions,  
Decay constant, charge radius and Electromagnetic Form Factor.

• Furthermore, the image of the pion in the configuration space has
been constructed. This 3D imaging is in line with the goal of the 
future Electron Ion Collider.

• The beyond-valence contributions are important. The valence 
probability is of the order of 70%.

• We intend to calculate other Hadronic observables: TMD, GPD.
• Future plan is to include dressing functions for quark and gluon 

propagators and a more realistic quark-gluon vertex.

Conclusions	and	Perspectives



Spin	configurations	contributions

Within the BSE approach we can calculate the contribution to the valence FF 
from the 2 different spin configurations present in the pion.

For zero momentum transfer, the pure relativistic Spin-aligned configuration
contributes with 20%.

Zero in spin-aligned FF is due to relativistic spin-orbitcoupling that produces 
the term           , wich flips the sign around Q2~8GeV2

For largeQ2 , the difference between the exactformula, the asymptotic
expressionand pQCD becomes small.

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).
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Pion	Distribution	Amplitude

The spin components of the DA, defined by

Aligned component (blue) more wide than the anti-aligned one (red).



Valence	vs	Covariant	FF

Beyond-valence contributions are important for small Q2



Quantitative results
To solve the BSE we have 3 input parameters: 

i) the constituent quark mass (m), ii)  the gluon mass (     )
iii) the scale of the interaction vertex (    ) 

We consider the pion mass of 140 MeV.

The Biding energy is



Pion	Decay	Constant
In terms of the BS amplitude, we can write the Pion Decay Constant as:

Contracting with        and using the BSA decomposition we have 

which can be expressed as



Valence	Electromagnetic	 Form	Factor



Valence	Momentum	Distributions

The valence longitudinal-momentum distribution is:

with

The valence transverse-momentum distribution is:

with

The valence longitudinal and transverse LF-momentum distribution densities are 
obtained by properly integrating the Valence probability density.



Sliced	Valence	FF



Nakanishi	Integral	Representation

Let’s take a connected Feynman diagram (G) with N
external momenta pi, n internal propagators with 
momenta lj and masses mj and k loops.

The transition amplitude is given by (scalar theory)

Feynman parametrization

We obtain

The denominator is a linear combination of the scalar product of the external 
momenta and the masses. 
The coefficients and the exponent (n-2k) depends on the particular Feynman 
diagram.



Nakanishi	Integral	Representation

After some change of variables we can write

Performing integration by parts, we have the integral 
representation

where

The dependence upon the details of the diagram moves from the denominator to 
the numerator. We obtain the same formal expression for the denominator of any 
diagram.



Nakanishi	Integral	Representation
To represent the BSA, we consider the constituent particles with 
momentum p1, p2 and the bound-state with momentum p.

Using the identities

we obtain the NIR

where


