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The non-abelian generalization of the gauge symmetry proposed by C. N. Yang and R. Mills in 1954 was
done à la Maxwell, i.e., in terms of a set of partial differential equations. However, the integral formulation
counterpart of this generalization was not known until quite recently.

The critical problem in constructing the integral Yang-Mills equations is the need for a consistent definition
of the flux of the non-abelian electric and magnetic fields with which we can build a relationship with the
dynamically conserved charges in such a way that these charges are invariant under gauge transformations.
Indeed, the naive definition of the flux of the non-abelian fields Φ(F ) =

∫
Σ
Fµν

∂xµ

∂σ
∂xν

∂τ
dσdτ is strongly

dependent of the gauge choice since under a local gauge transformation g(x), Fµν(x) → g(x)Fµν(x)g
−1(x)

and therefore, the flux through a closed surface cannot be directly associated to gauge-invariant charges inside.

The problem of finding the gauge-invariant charges in non-abelian gauge theories is therefore linked to the
problem of formulating the integral version of the Yang-Mills equations.

By scanning the 3 + 1 dimensional Minkowski space-time with closed 2-dimensional surfaces based at a
reference point xR, which are in turn scanned by a family of homotopically equivalent loops based at xR, it
can be shown that the flux of the “conjugate field-strength” FW

µν (x) = W−1Fµν(x)W through that closed
surface, with W being the holonomy defined along a loop from xR to x, will transform, under a local gauge
transformation g(x), as Φ → g(xR)Φg(xR)

−1, i.e., bringing the gauge group element to that defined at the
reference point.

A relation between the flux of the conjugate field through the closed surface ∂Ω and quantities evaluated
inside the volume Ω can be established and expanding this construction for the dual field strength F̃µν =
1
2
ϵµνσρF

σρ, with the use of the (differential) Yang-Mills equations
\begin{eqnarray}
D_\mu Fˆ{\mu\nu} &=& Jˆ\nu_\textrm{e}\\
D_\mu \widetilde{F}ˆ{\mu\nu} &=& J_\textrm{m}ˆ\nu,
\end{eqnarray}
withDµ⋆ = ∂µ ⋆+ie[Aµ, ⋆] the covariant derivative, Fµν = ∂µAν − ∂νAµ + ie[Aµ, Aν ] the field strength
and Jµ

e,m the electric and magnetic currents, we obtain their integral formulation:
\begin{eqnarray}
\oint_{\partial\Omega}Wˆ{-1}F_{\mu\nu}W\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ\nu}{\partial \tau}d\sigma
d\tau = \int_{\Omega}\epsilon_{\lambda\mu\nu\gamma}Wˆ{-1}J_\textrm{m}ˆ{\gamma}W\frac{\partial xˆ{\lambda}}{\partial
\zeta}\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ\nu}{\partial \tau} d\sigma d\tau d\zeta \nonumber\\
+\int_{\Omega}\int_0ˆ\sigma [FˆW_{\mu\nu}(\sigma),FˆW_{\alpha\beta}(\sigmaˆ\prime)]\bigg(\frac{\partial xˆ\beta}{\partial
\zeta}(\sigmaˆ\prime)\frac{\partial xˆ\nu}{\partial \tau}(\sigma)
- \frac{\partial xˆ\beta}{\partial \tau}(\sigmaˆ\prime)\frac{\partial xˆ\nu}{\partial \zeta}(\sigma) \bigg)\frac{\partial
xˆ\alpha}{\partial \sigmaˆ\prime}\frac{\partial xˆ\mu}{\partial \sigma}d\sigmaˆ\prime d\sigma d\tau d\zeta
\end{eqnarray}
\begin{eqnarray}
\oint_{\partial\Omega}Wˆ{-1}\tilde{F}{\mu\nu}W\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ\nu}{\partial
\tau}d\sigma d\tau = \int{\Omega}\epsilon_{\lambda\mu\nu\gamma}Wˆ{-1}J_\textrm{e}ˆ{\gamma}W\frac{\partial
xˆ{\lambda}}{\partial \zeta}\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ\nu}{\partial \tau} d\sigma d\tau
d\zeta \nonumber\\
+\int_{\Omega}\int_0ˆ\sigma [\tilde{F}ˆW_{\mu\nu}(\sigma),FˆW_{\alpha\beta}(\sigmaˆ\prime)]\bigg(\frac{\partial
xˆ\beta}{\partial \zeta}(\sigmaˆ\prime)\frac{\partial xˆ\nu}{\partial \tau}(\sigma)
- \frac{\partial xˆ\beta}{\partial \tau}(\sigmaˆ\prime)\frac{\partial xˆ\nu}{\partial \zeta}(\sigma) \bigg)\frac{\partial
xˆ\alpha}{\partial \sigmaˆ\prime}\frac{\partial xˆ\mu}{\partial \sigma}d\sigmaˆ\prime d\sigma d\tau d\zeta.
\end{eqnarray}

In order to obtain the conserved charges, we consider the generalization of the holonomy operator by as-
signing to each loop parameterized by τ , scanning a closed 2-dimensional surface with base-point at xR, the
quantity B =

∮
γ
W−1BµνW

∂xµ

∂σ
∂xν

∂τ
dσ and define the 2-holonomy by the differential equation

\begin{equation}
\frac{dV}{d\tau}+ieV\mathcal{B} = 0,
\end{equation}



whose solution is the ordered series
\begin{equation}
V[\partial \Omega] =V_\circ\;P_2\;eˆ{-ie\ointWˆ{-1}B_{\mu\nu}W\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial
xˆ\nu}{\partial \tau}d\sigma d\tau}.
\end{equation}
This same operator can be obtained if we consider the 2-dimensional surface where it is calculated to be the
result of continuous deformations from an infinitesimal surface at xR. This leads to a definition of the 2-
holonomy as the ordered series
\begin{equation}
V[\Omega] = P_3\;eˆ{ie\int_{0}ˆ{2\pi}\mathcal{A}(\zeta)d\zeta}\;V_\circ
\end{equation}
with
\begin{eqnarray}
\mathcal{A} &=& \int_\Sigma VWˆ{-1}\left(D_\lambda B_{\mu\nu}+D_\mu B_{\nu\lambda}+D_\nu B_{\lambda
\mu}\right)WVˆ{-1}\frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ\nu}{\partial \tau}\frac{\partial xˆ\lambda}{\partial
\zeta}d\sigma d\tau\\
&+&ie\int_\SigmaV \int_{0}ˆ{\sigma}\left[\mathcal{F}{\mu\nu}ˆW(\sigma’),BˆW{\mu\nu}(\sigma)\right]\left(\frac{\partial
xˆ\mu}{\partial \sigma}\frac{\partial xˆ{\nu}}{\partial \zeta}\frac{\partial xˆ\alpha}{\partial \sigma’}\frac{\partial
xˆ\beta}{\partial \tau} - \frac{\partial xˆ\mu}{\partial \sigma}\frac{\partial xˆ{\nu}}{\partial \tau}\frac{\partial xˆ\alpha}{\partial
\sigma’}\frac{\partial xˆ\beta}{\partial \zeta}\right)Vˆ{-1}d\sigma d\tau
\end{eqnarray}
where Fµν = Fµν −Bµν .

The fact that the operator V can be calculated in these two different but equivalent approaches lead us to the
identity
\begin{equation}
P_3\;eˆ{ie\int_{0}ˆ{2\pi}\mathcal{A}(\zeta)d\zeta}= P_2\;eˆ{-ie\ointWˆ{-1}B_{\mu\nu}W\frac{\partial xˆ\mu}{\partial
\sigma}\frac{\partial xˆ\nu}{\partial \tau}d\sigma d\tau}.
\end{equation}

ForBµν = αFµν + βF̃µν , the above equation, which is the non-abelian Stokes theorem, leads to the integral
Yang-Mills equations.

Two given closed surfaces in space-time can be regarded as points in the loop space L2Ω and the volume
between them will define a path in this space.

A consequence of the integral Yang-Mills equations is that the operator V [Ω] is path-independent in L2Ω,
i.e., it does not change under a reparameterization of the volume enclosed by ∂Ω.
By appropriately splitting space-time into space and time one can then show that V evolves from a t = 0
volume Ω0 to a t > 0 volume Ωt as
\begin{equation}
V[\Omega_t] = UV[\Omega_0]Uˆ{-1},
\end{equation}
i.e., it undergoes a unitary tranformation, thus preserving its eigenvalues which can be identified with the
conserved charges.

The integral Yang-Mills equations can be regarded as a zero-curvature equation in the loop space L2Ω and
the conserved charges are a consequence of the hidden gauge symmetry there.
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