Qubitization of Field Theories

Paulo Bedaque

A. Alexandru, A. Carosso, Andy Sheng,...

Classical numerical quantum field theory / many-body physics:

$$
\langle O\rangle=\frac{\int D \phi e^{i S[\phi]} \mathscr{O}[\phi]}{\int D \phi e^{i S[\phi]}}
$$

Classical numerical quantum field theory / many-body physics:

Classical numerical quantum field theory / many-body physics:

Large amount of theory and practice:
\therefore What can and cannot be computed
\because How many gates (time) is required, sometimes cost $\sim \mathrm{e}^{\mathrm{V}}$
\therefore Large collection of algorithms

* Memory / speed / energy trade-offs
* Most chips run videos games/cels

Classical numerical quantum field theory / many-body physics:

$$
\langle\mathcal{O}\rangle=\frac{\int D \phi e^{i S[\phi]} \mathcal{O}[\phi]}{\int D \phi e^{i S[\phi]}}
$$

iS is purely imaginary: the mother of all sign problems

Classical numerical quantum field theory / many-body physics:

$$
\langle\mathcal{O}\rangle=\frac{\int D \phi e^{-S_{E}[\phi]} \mathcal{O}[\phi]}{\int D \phi e^{-S_{E}[\phi]}}
$$

S_{E} may be complex (chemical potential) probably has cost $\mathrm{O}\left(\mathrm{e}^{\mathrm{V}}\right)$: sign problem

Direct diagonalization:

$$
\text { exponential cost } \sim\left(2^{\mathrm{V}}\right)^{3}
$$

Classical numerical quantum field theory/many-body physics:

$$
\langle\mathcal{O}\rangle=\frac{\int D \phi e^{-S_{E}[\phi]} \mathscr{O}[\phi]}{\int D \phi e^{-S_{E}[\phi]}}
$$

S_{E} may be complex (chemical potential) probably has cost $\mathrm{O}\left(\mathrm{e}^{\mathrm{V}}\right)$:
QCD equation of state, Hubbard model away from 1/2-filling, ...
iS is purely imaginary:
transport coefficients (viscosities, heat conductivities), v-propagation in dense / hot matter, thermalization of QGP, ...

Quantum numerical quantum field theory/many-body physics:

qubit:
 $$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

Quantum numerical quantum field theory / many-body physics:

Few (very clever) algorithms doing "weird" stuff

Quantum numerical quantum field theory/many-body physics:

Quantum numerical quantum field theory/many-body physics:

1. Encode the Hilbert space into qubits
2. Prepare the initial state
3. Encode the hamiltonian into quantum gates
4. Find something suitable to measure

Quantum numerical quantum field theory/many-body physics:

1. Encode the Hilbert space into qubits
2. Prepare the initial state
3. Encode the hamiltonian into quantum gates
4. Find something suitable to measure

Field theories have infinite dimensional Hilbert spaces but
 Quantum computers have finite registers $\sim \mathrm{e}^{\mathrm{N}}$

Discretize space (lattice)
bosonic theories: discretize field space

Field theories have infinite dimensional Hilbert spaces but
Quantum computers have finite registers $\sim \mathrm{e}^{\mathrm{N}}$

Example: nuclear physics (protons and neutrons, spin up and down)

Example: nuclear physics (protons and neutrons, spin up and down)

\# of qubits ~V

Hilbert space dimension 4^{V}

Example: nuclear physics (protons and neutrons, spin up and down)

Local hamiltonian, polynomial \# of gates, \# gates ~ V, exponential gain!

This kind of encoding does not work for bosons: occupation number $\mathrm{n}=0,1,2,3, \ldots$

- Condensates?
- Technical complication
- Naive truncations break symmetries of the theory: no (space) continuum limit
continuum limit:

$$
g_{0}(a), g_{1}(a), \ldots
$$

$$
\tilde{g}_{0}(a), \tilde{g}_{1}(a), \ldots
$$

$$
g_{0}(a \rightarrow 0) \sim \frac{1}{\log (\Lambda a)}
$$

$$
g_{4}\left(a \rightarrow \circ \sim \frac{1}{a^{4}}\right.
$$

SU(3) gauge theory

at each link:

finest discretization: $\operatorname{SU}(3) \longrightarrow S(1080)$ ("Valentiner group")

S(1080) gauge theory

space (11 qubits)

S(1080) gauge theory

$$
S=-\frac{2}{g_{0}^{2}} \sum_{p} \square_{p}-\frac{1}{g_{1}^{2}} \sum_{p} \square_{p}^{2}
$$

No continuum limit.
There are no $g_{0,} g_{1}$ for fine enough lattices

S(1080) gauge theory

$S=-\frac{2}{g_{0}^{2}} \sum_{p} \square_{p}-\frac{1}{g_{1}^{2}} \sum_{p} \square_{p}^{2}$
extrapolate to the same continuum limit

S(1080) gauge theory

O(3) σ-model

- in $1+1 \mathrm{D}$ it is asymptotically free, like QCD

$$
S=\frac{1}{2 g^{2}} \int d^{2} x \partial_{\mu} \mathbf{n} \cdot \partial^{\mu} \mathbf{n}>\text { unit vector }
$$

at each point:

infinite-dimensional 2-dimensional space space: S^{2}

$\mathrm{O}(3) \sigma$-model

- in $2+1 \mathrm{D}$ it is asymptotically free, like QCD

$$
S=\frac{1}{2 g^{2}} \int d^{2} x \underbrace{\partial_{\mu} \mathbf{n} \cdot \partial^{\mu} \mathbf{n}}_{\text {rotation invariant: } O(3)} \underbrace{}_{\text {unit vector }} \text {. }
$$

at each point:

$\mathrm{O}(3) \sigma$-model

- in $2+1 \mathrm{D}$ it is asymptotically free, like QCD

$$
S=\frac{1}{2 g^{2}} \int d^{2} x \underbrace{\partial_{\mu} \mathbf{n} \cdot \partial^{\mu} \mathbf{n}}_{\text {rotation invariant: } O(3)} \underbrace{}_{\text {unit vector }}
$$

at each point:

$$
\mathbf{n}=\left(x_{1}, x_{2}, x_{3}\right) \quad \Psi=\psi_{0}+\psi_{i} x_{i}+\psi_{i j} x_{i} x_{j}+\cdots
$$

$\mathrm{O}(3) \sigma$-model

- in $2+1 \mathrm{D}$ it is asymptotically free, like QCD

$$
S=\frac{1}{2 g^{2}} \int d^{2} x \underbrace{\partial_{\mu} \mathbf{n} \cdot \partial^{\mu} \mathbf{n}}_{\text {rotation invariant: } O(3)} \underbrace{}_{\text {unit vector }}
$$

at each point:

$$
\left.\begin{array}{c}
\mathbf{n}=\left(x_{1}, x_{2}, x_{3}\right) \\
\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}=3 \\
\text { 4-dimensional } \\
\text { space }
\end{array}\right) \quad \Psi=\psi_{0}+\psi_{i} \sigma_{i}
$$

$\mathrm{O}(3) \sigma$-model

- in $2+1 \mathrm{D}$ it is asymptotically free, like QCD

$$
S=\frac{1}{2 g^{2}} \int d^{2} x \underbrace{\partial_{\mu} \mathbf{n} \cdot \partial^{\mu} \mathbf{n}}>\text { unit vector }
$$ rotation invariant: $O(3)$

$$
\mathbf{n}=\left(x_{1}, x_{2}, x_{3}\right) \quad \underset{\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}=3}{\sigma_{\text {4-dimensional }}^{\text {space }}} \uparrow \underset{\sim}{\Psi}=\psi_{0} \sigma_{i}
$$

Fuzzy O(3) σ-model

Hilbert space: $\left(C^{4}\right)^{\mathrm{V}}$

$$
\begin{aligned}
H \Psi= & \sum_{x}\left[\eta g^{2}\left[\sigma_{i}(x),\left[\sigma_{i}(x)\right], \Psi\right] \pm \frac{\eta}{g^{2}} \sigma_{i}(x) \sigma_{i}(x+1) \Psi\right] \\
& \nabla^{2} \quad \partial \mathbf{n} \cdot \partial \mathbf{n} \approx\left(\mathbf{n}_{x+1}-\mathbf{n}_{x}\right)^{2}=2-2 \mathbf{n}_{x+1} \cdot \mathbf{n}_{x}
\end{aligned}
$$

exact $\mathrm{O}(3)$ invariance
σ-model is exactly solvable
fuzzy model can be "solved" by tensor network technology

Fuzzy O(3) σ-model

$$
e^{-i \Delta t K} \quad e^{-i \Delta t V_{1}}
$$

$$
e^{-i \Delta t V_{2}}
$$

$$
e^{-i \Delta t V_{3}}
$$

3-site
simulation:

Fuzzy O(3) σ-model

$$
|\Psi\rangle=\operatorname{tr}\left[A^{\left.a_{1} \ldots \ldots A^{a_{N}}\right]\left|a_{1} \cdots a_{L}\right\rangle}\right.
$$

1. find energy gap Δ and correlation length $1 / \mathrm{m}$
2. adjust η so $\Delta=m$ (Lorentz symmetry)
3. $\Delta(\mathrm{L})$ is determined by phase shifts

O(3) σ-model (asymptotically free)

Antiferromagnetic fuzzy $\mathrm{O}(3) \sigma$-model

Ferromagnetic fuzzy $O(3) \sigma$-model

Generalizations

- $O(5), O(7), \ldots$ are running now
- different "commutative" truncation of $\mathrm{O}(3)$ is running now
- $\mathrm{O}(4)=\mathrm{SU}(2) \times \mathrm{SU}(2)$: chiral model
- $\mathrm{SU}(2)$ gauge theory is reminiscent of chiral models
- SU(3)? Quarks?

Summary

- (Trotterized) time evolution mimics real time evolution
- local hamiltonian can lead to exponential improvement on finite density / real time calculations
- encoding bosonic theories is tricky: preserve some symmetries to recover the continuum limit
- fuzzy sphere construction works for the σ-model; what about other models?

