A negative view on the waveform analysis

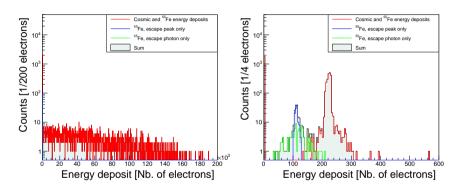
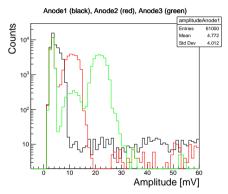
Alexander Deisting

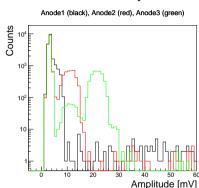
8th of November, 2019

These slides:

- ► As Ed showed in his triptychTM code, there are quite substantial negative pulses
- ▶ Also the nice anode 1/2 spectra in the waveform RMS analysis as opposed to the non existing spectra in the anode 1/2 amplitude analysis, showed that there is something going on that our code focusing on positive polarity signals does not catch
- ▶ I put in the negative pulse analysis, but since this involved changing many things, I wanted to make sure:
 - i The actual positive polarity analysis is still working
 - ii The new negative polarity analysis is working
 - iii Bonus: See what effect having negative polarity signals has on the positive polarity pulse analysis
- ► To do so I went back to a set of known signals: MC simulation of 11.000 pulses with positive and negative polarity each

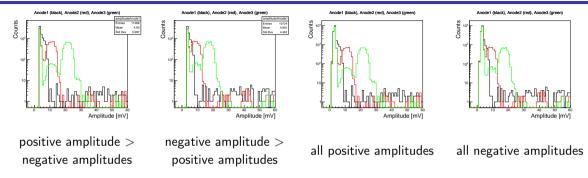
Reminder: Input spectrum, ⁵⁵Fe & cosmics [A. Deisting, week 43 slides]


Figure: Expected energy deposits of $^{55}\mathrm{Fe}$ decay radiation and cosmic muons inside a gas volume filled with $\mathrm{Ar\text{-}CO_2}$ (98-2). This is the result of a toy Monte-Carlo using the approximate layout of a quarter of the HPTPC, the heed package in Garfield++, and information from the ESTAR and XCOM databases. The right plot is a zoomed view of the left plot.

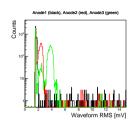
Amplitude spectra, all pulses

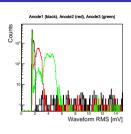
Previously shown:


Current analysis:

Noise periods: $10\times 10^{-6}\,\mu\text{s}$ and $5\times 10^{-6}\,\mu\text{s}$

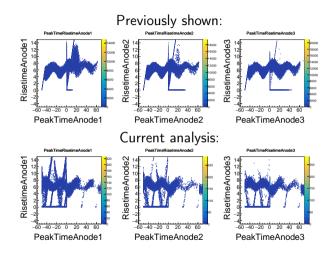
Seems as if the standard analysis is not broken


Amplitude spectra



- ► The negative (positive) amplitude pulses mainly contribute to the noise peak when one looks only for positive (negative) pulses
- ▶ Even while adding noise, and mixing positive and negative amplitude spectra, the input distributions are recovered when requiring a simple cut as *e.g.* "positive amplitude > negative amplitudes"

Waveform RMS



positive amplitude > negative amplitudes

negative amplitude > positive amplitudes

all amplitudes

- As observed previously: The waveform RMS spectra seem to have better energy resolution when the amplitude spectra
- A reasonable distribution is recovered while requiring a simple cut as *e.g.* "positive amplitude > negative amplitudes" during the analysis of data containing positive and negative polarity pulses.
- ▶ Broader/double peaks appear in the RMS spectrum when no amplitude is selected

Summary:

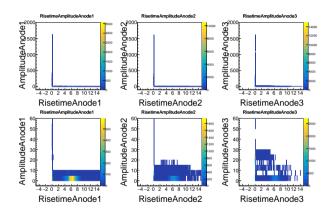
- Amplitude analysis works for negative, positive and mixtures of negative and positive amplitudes
- ▶ The time analysis still works for positive polarity pulses ...
- ▶ ... however in case of the negative polarity pulses, there still seems to be a bug

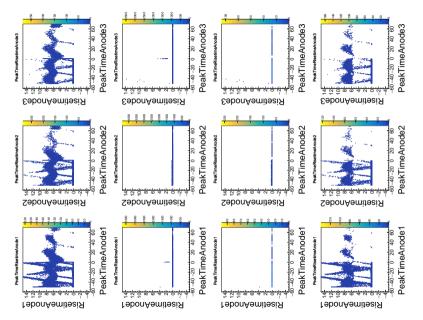
(I intended to run this on data as well for today, but I had some rapTORR issues. To be worked out.)

Backup

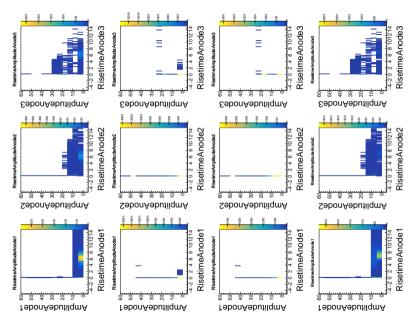
Anode parameter overview, positive polarity pulses

Parameter	anode 1	anode 2	anode 3
channel ID	1	2	3
gain	"CR112"	"CR112"	"CR112"
V_{\min} [mV]	-200.0	-200.0	-200.0
$V_{ m max}$ [mV]	1800.0	1800.0	1800.0
preamp clipping value [mV]	1600.0	1600.0	1600.0
DC offset [mV]	-20	30	-12
trigger threshold [mV]	20	20	20
trigger polarity falling	false	false	false
pulse polarity falling	false	false	false
channelName	"Anode_1"	"Anode_2"	"Anode_3"
$G_{ m preamp}$	12	12	12
$G_{ m meshes}$	10000	25000	50000

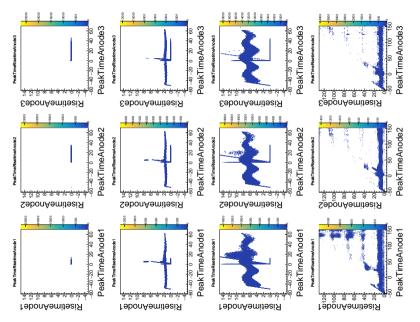

Parameters in italics are currently not used for anything.


Anode parameter overview, negative polarity pulses

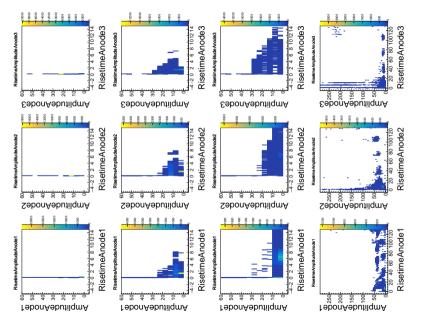
Parameter	anode 1	anode 2	anode 3
channel ID	1	2	3
gain	"CR112"	"CR112"	"CR112"
V_{\min} [mV]	-200.0	-200.0	-200.0
$V_{ m max}$ [mV]	1800.0	1800.0	1800.0
preamp clipping value [mV]	1600.0	1600.0	1600.0
DC offset [mV]	-20	30	-12
trigger threshold [mV]	20	20	20
trigger polarity falling	false	false	false
pulse polarity falling	false	false	false
channelName	"Anode_1"	"Anode_2"	"Anode_3"
$G_{ m preamp}$	12	12	12
$G_{ m meshes}$	8000	20000	40000


Parameters in italics are currently not used for anything.

Time checks



14



(A. Deisting) 15.11.2019 – HPTPC meeting

15

(A. Deisting) 15.11.2019 – HPTPC meeting 16

(A. Deisting) 15.11.2019 – HPTPC meeting

17

ToDo's Week 46 – Waveform RMS: Data (55 Fe) vs background (no source)

Closing remarks

- ▶ There is a good indication that the peaks in the RMS are due to the source
- ▶ The nice spectra from anode 2 and anode 1 may result from negative polarity signals $\Rightarrow \square$ Check for negative signals in the analysis code
- Amplitude and RMS correlation looks as if we could calibrate that
- I don't have yet Ed's triptych code to check the different regions as well

 ⇒ □ Do triptych's for the three signal regions
- ☐ Still pending: sin-fit correction on pre-selected waveforms

ToDo's Week 36 – Waveform analysis

Analysis overview

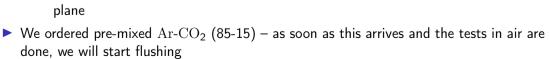
ightharpoonup A fraction of the August data - pure ${\rm Ar}$ and ${\rm Ar\text{-}CO_2}$ at various pressures has been analysed using exponential smoothing as well as a sin fit to subtract periodic noise

On the noise-fit:

- Check more advanced fit-functions than just a plane sin fit
- ☑ Check whether the fit range can be changed to improve the overall results
- \Box Do detailed χ^2 cuts and checks with the current data set to see where the fit improves the analysis
- ⇒ A more detailed presentation will follow

ToDo's Week 30 – Hardware report

General HPTPC news:


- Over the last week-end we took data until the DAQ decided to not take data anymore.
 (This cost us the highest voltage setting)
- On Monday we had once more Imperial man-power ⇒ See the slides on the OROC holder test
- Evacuation over the rest of Monday, and the full Tuesday
- ▶ Right now we are back to about Ar-CO₂ (88-12) at 1 atm
- Data taking at these voltages is still pending

Coming up:

- ▶ Power outage in the HPTPC lab on Mon, T111 probaly more than one day
- ✓ Couple test pulses in one of the meshes and readout the other preamplifiers
- ☑ Look into changing the T111 and T133 clean room filters

OROC updated

- ► All shortening cards are in place
- ► The OROC is back in its box and awaits testing
- Everything needed for the HV distribution boxes I have in hand
- ► The following list of OROC ToDo's applies:
 - ✓ Put cooper shims
 - ✓ Do the HV distribution network
 - ✓ HV tests in air
 - Pulser test in air
 - Construction of the field line termination. plane

OROC holder tests

- ► The production of the OROC holder for the vessel is progressing well
- In the pictures you see a fitting test to the vessel
- ▶ The full holder should be completed in the next weeks

Readout Electronics update

- ☑ Two digitiser board with the APV assembled
- Components for the attenuation/protection board arrived at Imperial and the assembly is under-way
- ☑ First iteration of the firmware written (@Imperial)
- Felix integration tests with the digitiser board only (@Imperial)
- ☐ Commissioning with a small detector ...

Bias T sparking

- At about 3.5 kV on anode 3 sparking in the anode 3 bias T occurred
- ► Previously higher voltages had been achieved, all components in the anode 3 bias T are rated for high voltage
- ▶ It turns out that the *signal-to-preamp* (which should be at ground potential) leg of bias T discharged against the nearest ground
- ▶ The same could be observed at the anode 2 bias T for high voltages
- As a measure the anode 3 signal-to-preamp leg has been connected to ground via a $3 \text{ M}\Omega$ resistor to provide a path to ground in case there is some charging up
- ▶ We observed once more discharges in a bias T, but could not determine whether it was in the anode 3 one
- ☐ We'll keep an eye....
- ☐ Check that there are no effects on the signal readout with the extra resistor

OROC

- All shortening cards which we could put, are in place
- The OROC is back in its box and awaits testing
- We have the aircon again running in the MWPC and MPGD lab
- Copper shims should arrive tomorrow or next week
- A slightly reduced list of the usual OROC ToDo's still applies:
 - ✓ Put cooper shims
 - ☑ Do the HV distribution network
 - ✓ HV tests in air
 - Pulser test in air
 - Construction of the field line termination plane

ToDo's Hardware report week 29

A word on high frequency noise

- ▶ There is 1.35 MHz noise in the data
- ▶ However: It turns out that is only there at certain instances and permanently, uncorrelated with changes to the HPTPC \rightarrow Possibly something else in the building is responsible
- ▶ In other news: The signal from the preamp at anode 2 looks different, because the evaluation board there has a different capacitor
- ► Hence:
 - ☑ Test the response of the modified preamp to test pulses on the test input
 - ☑ Do the same, but with pulses coupled into the real input using a capacitor
 - ☑ Drive the preamps into saturation (check first on the old scope as a safety measure)
 - □ Do the same test with a non modified preamp
 - ✓ Drive only standard preamps into saturation (check first on the old scope as a safety measure)

OROC

- ➤ The first samples for the copper shims arrived, they fit and the rest is ordered
- ▶ Annora measured dust counts and I did a clean of the floor in T111 – We will see whether this helped
- ► The next OROC step:
 - ✓ Put shortening cards (cooper shims)
 - ✓ Mount the OROC back to the lid of the test box (copper shims can also be placed after this)
 - ✓ Do the HV distribution network
 - ✓ HV tests in air
 - ✓ Pulser test in air
 - Construction of the field line termination plane

ToDo's Hardware report week 26

HPTPC

- Jocelyn fixed the burst disk:
 - ▶ We discovered where was a puncture in the burst disk
 - ▶ It was replaced with a 5 barG burst disk
- $ightharpoonup^{55}{
 m Fe}$ is in the vessel now ightharpoonup We will explore with one fill if we can see a peak related to this source
- ✓ Filling the vessel again
- Decision on a gas mixture / pressure for a diffusion measurement will be made when we have first insights from the light gain analysis
- ✓ Talk to FIKE what they think is the best solution for our use case (possibly another pressure relive valve)

ToDo's Waveform report week 25

Update on the toy Monte-Carlo to model the energy deposited in the detector

- ▶ Using the known decay energies the ²⁴¹Am sources (α , γ) and the ¹³⁷Cs (β , γ) decay energy spectra are modelled
 - ▶ $^{137}\mathrm{Cs}~\beta$ -spectrum: Based on interpolated IAEA data
 - $ightharpoonup \gamma$ and lpha-spectra: Approximated using Gaußians with an arbitrary width
- \blacktriangleright The γ absorption as well as charged particle ranges are extracted from ESTAR, PSTAR and XCOM
- $ightharpoonup \gamma$ s and α s are assumed to depose their full energy in the detector
- ightharpoonup Currently cosmic μ are added
- ☑ Garfield/heed will be used for the energy deposit of charged particles
- ✓ Furthermore the detector geometry is being put in
- ✓ ⁵⁵Fe is added