

Conceptual Design of the DFH

DFH Conceptual Design Review

A. Ballarino

A. Ballarino, R. Betemps, S. Claudet, P. Cruikshank, J. Fleiter, J. Hurte, Y. Leclercq

15 November 2019 - CERN

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

Cold Powering System

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

DFH Functionality

- Receive and shuffle the MgB₂ cables from the SC Link and connect to the HTS cables of the current leads;
- Provide appropriate space for making/hosting the electrical splices between the MgB₂ cables and the HTS cables of the current leads. The preference is to have the splices accessible for - highly unlikely - need for repair;
- Flow the He gas received at about 17 K from the SC Link and provide appropriate cooling of the electrical connections;
- Connect the current leads, distributed near the DFH, to the MgB₂ cables in the SC Link with the most appropriate and compact configuration;

Hiter Product Instrumentation signals (Vtaps, Tsensors).

DFH Installation

Present baseline (not based on a detailed design):

- The SC Link is lowered in the LHC underground areas, routed in its final configuration and then connected to the DFH cryostat;
- Routing of MgB₂ and HTS cables and MgB₂ to HTS splices are done in the tunnel (and not tested till final operation in the machine);
- Each SC Link is tested at the surface in a dedicated test station; each current lead is tested at the surface in dedicated test station.

MgB₂ cables in the SC Link

 $\frac{\Phi \text{ext} \sim 60 \text{ mm}}{14 \text{ Cables + 1}}$ $\sim 60 \text{ kA}$

Helium mass flow rate in the DFH

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

11

Demo 1

DDFH in Demo 1

System test in SM-18 (completed in March 2019)

Full size SC Link cryostat – 2×18 kA

13

DDFH in Demo 1

- Construction of DDFX demonstrator
 - Double chamber with thermal shield (thermally floating)
 - Acceptable heat load
 - Assembly process
- Realization of two 18 kA splices
- Splices fixed to the cold mass
- Optimization of splices' cooling GHe
- Routing of HTS and MgB₂ cables
- Routing out of instrumentation (from cold mass to RT)
- Vertical leads

DDFH in Demo 1

Expected **18 kA splice** resistance of **1.7 n** Ω (prediction based based on FEM simulation validated via measurements in LHe at 4.5 K)

MgB₂/HTS splices:**1.9 nΩ** at 18 kA (**measured**)

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

DDFX Design Evolution

DFH Working Reference

- **Two modules** each 4 m long ø 1,2 m (length without current leads)
- Total length with current leads ~ 15 m (plus SC Link in between)
- SC Link in between modules: ~ 14.7 m

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

One single module

DFHX Concept – Cryostat with Current Leads

DFHX Concept – Cryostat with Current Leads

Top view

21

Module 1:

- It splays and shuffles all MgB₂ cables coming out from the SC Link. The 3 kA MgB₂ cables are routed out from the shuffling module (into Module 2) via a single pipe containing the six 3 kA coaxial MgB₂ cables.
- It contain the 7 kA and 18 kA joints between MgB2 and HTS. The length of each of the five pipes allocated for the joints (four pipes, one for each of the 18 kA joints, and one pipe for the three 7 kA joints) is ≥ 300 mm.

Module 2:

 This module routes out the HTS cables of the 7 kA and 18 kA current leads, and contains the box that splays and shuffles the 3 kA MgB₂ cables to Module 3.

Module 3:

This module contains the 3 kA joints between MgB₂ and HTS, and it routes out the 3 kA HTS cables. The length allocated for the two joints to the coaxial cables is 450 mm. There are three pipes for the MgB₂ to HTS joints, and each pipe contains four joints (two coaxial MgB₂ cables connected to four HTS cables).

- Each DFH module is assembled separately. The modules are then put together for the routing and the splicing of the superconducting cables.
- The length of the HTS part of the leads is maintained to less than 2.5 m.

DFH Concept – GHe flow

IL-LHC PROJEC

Building 288

From Concept to Design

28

* Iteration with transport

DFH Design

Table of contents

- The DFH in the HL-LHC Cold Powering System
- DFH Functionality
- The DDFH in Demo 1
- DFH: Design evolution
- DFH: Concept
- SC Link connection to DFH: surface vs underground assembly
- Conclusions

Compact concept: possibility of lowering the full system in the tunnel after test at the surface. In addition to system cost reduction because (one module and shorter length of MgB₂ and SC Link), the main advantages are:

- Performance of all assembly operations at the surface;
- Full qualification of the system at the surface (including splices);
- No manipulation of cables (handling/cutting/splicing) after qualification at the surface;
- Test station for SC Links largely simplified (use of series DFH and current leads).

From Concept to Design

Conclusions

- A 3D DFH concept has been developed
- The compact concept brings in several advantages and guarantee full WP6a functionality
- To date, the concept has been validated with a mockup and engineered in a 3D design
- Experience from Demo 1 has been essential for validating several aspects of the proposed concept
- Possibility of lowering the system in the tunnel after cryogenic tests brings in a huge advantage for the system

Thanks for your attention

Additional slides

HV Levels - Triplets

EDMS NO. REV. VALIDITY 1821907 2.0 APPROVED

Rating (kA)	Worst case voltage to ground during operation (V)	Acceptance tests of components to ground (V)		Insulation test voltage of system to ground (V)		Leakage current per component (µA)	Test duration (s)
		RT	NOC	RT	NOC		
18	900	4600	2300	460	1080	≤10	30
7	900	4600	2300	460	1080	≤10	30
2	540	3160	1580	316	648	≤10	30
0.2	540	3160	1580	316	648	≤10	30
0.12	40	1160	580	220	360	≤10	30
0.035	900	4600	2300	460	1080	≤10	30

RT = Room Temperature ($20 \pm 5 \circ C$)

NOC = Nominal Operating Conditions. For all WP6s components, it corresponds to GHe at RT and 1.30 ± 0.05 bar

HV Levels – Matching Sections

D2: treated as for a 18 kA circuit – conservative

18	kΑ
----	----

Rating (kA)	Worst case voltage to ground during operation (V)	Acceptance tests of components to ground (V)		Insulation test voltage of system to ground (V)		Leakage current per component (µA)	Test duration (s)
		RT	NOC	RT	NOC		
18	900	4600	2300	460	1080	≤10	30

D2

Rating	Worst case voltage to ground	Acceptance of components		Insulation voltage of system		Leakage current	Test duration
kA	during operation (V)	to ground (V)		to ground (V)		per component (µA)	(s)
		RT	NOC	RT	NOC		
D2	525	3100	1550	310	630	≤10	30

D2 correctors: 0.6 kA rating, Worst case to ground = 590 V, Components test: 5.7 kV (RT) - Components test 2.860 kV (NOC)

