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I. INTRODUCTORY REMARKS

In this document, we will show the results for the speckle tests performed at ALBA

NCD-SWEET beamline on Oct. 16th 2018.

A. Data sets

• CCD camera gain set to 99. Probed sample-detector distances: 57 mm, 67 mm, 77

mm, 87 mm, 97 mm, 127 mm, 157 mm, 180 mm, 200 mm, 250 mm, 300 mm, 350 mm,

400 mm, 450 mm. Graphs shown in this report refer to these data;

• CCD camera gain set to 9. Probed sample-detector distances: 180 mm, 200 mm, 250

mm, 300 mm, 350 mm, 400 mm, 450 mm. Analysis to be completed.

For each distance, two sets of data were acquired: one with a capillary filled with the

colloidal suspension (silica nanoparticles, 500 nm diameter, nominal volume fraction 10 %),

the other with a capillary filled with only water. Each acquisition consists of a stack of 100

images acquired with an exposure time of 50 ms. For each acquisition, we performed DFA

with Local Oscillator compensation (namely, we divide the difference between two different

images I1 and I2 by their sum) to retrieve the pure speckle signal is from images

is =
I1 − I2

I1 + I2
(1)

and we extracted horizontal and vertical profiles from the corresponding 2D power spectra.

B. Details of optics

• YAG:Ce thickness: 100 µm;

• microscope objective magnification: 23X;

• microscope objective Numerical Aperture: 0.4;

• CCD pixel size: 3.75 µm.
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C. Details of data analysis

• R.O.I.: [10:910,10:910];

• image lag for DFA: 50;

• angular sector for horizontal direction: [-10:10];

• angular sector for vertical direction: [80:100].
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II. MICROSCOPE OBJECTIVE MAGNIFICATION CHECK
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(c) z = 77 mm
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(d) z = 87 mm
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(f) z = 127 mm
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(g) z = 157 mm
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(h) z = 180 mm
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(i) z = 200 mm
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(j) z = 250 mm
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(k) z = 300 mm
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(l) z = 350 mm
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(m) z = 400 mm
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FIG. 1: Horizontal profiles of heterodyne speckle power spectra (solid red line with open

red circles) and corresponding shotnoise data (solid blue line with blue square dots). The

theoretical Talbot transfer function at the nominal distance z (dotted black line) is also

reported for comparison.
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(b) z = 67 mm
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(c) z = 77 mm
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(d) z = 87 mm
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(e) z = 97 mm
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(f) z = 127 mm
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(g) z = 157 mm
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(h) z = 180 mm
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(i) z = 200 mm
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(j) z = 250 mm
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(k) z = 300 mm
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(l) z = 350 mm
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(m) z = 400 mm
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FIG. 2: Vertical profiles of heterodyne speckle power spectra (solid red line with open red

circles) and corresponding shotnoise data (solid blue line with blue square dots). The

theoretical Talbot transfer function at the nominal distance z (dotted black line) is also

reported for comparison.

As it can be noticed from Fig. 1 and from Fig. 2 in particular, the positions of Talbot

maxima and minima perfectly match the theoretical ones. This provides a robust cross-

check for the microscope objective magnification (M ∼ 23) which is in good agreement
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with the value obtained from the measured Field Of View FOV = [212 µm, 160 µm] (total

image size = 1296x966 pixels, pixel size = 3.75 µm). For these numbers, refer to the email

communication by Andriy on Oct. 18th, 2018.

We also notice that the number of Talbot oscillations along the horizontal direction is

smaller than in the vertical one. This reflects the asymmetry in 2D power spectra and it

implies that coherence effects are present, at least in the horizontal direction. Here the value

of the Fourier wavevector q at which power spectra reach the shotnoise level gets smaller as

the sample-detector distance is increased: this is indicative of a decay of Talbot oscillations

dictated by coherence.
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III. CALIBRATION FUNCTION

The power spectrum I(q) of heterodyne speckle field is given by:

I(q, z) = C(q, z)T (q, z)S(q)H(q) + P (q), (2)

where

• C(q, z) represents the squared modulus of the radiazion CCF;

• T (q, z) = 2 sin2[zq2/(2k)] represents the Talbot transfer function;

• S(q) represents the particle form factor. For small particles, it is almost constant and

henceforth it can be neglected;

• H(q) represents the calibration function. It is mainly given by the response function

(in the reciprocal space) of the YAG screen and detection optics;

• P (q) represents the shotnoise contribution.

The calibration function is obtained from the shortest sample-detector distances by divid-

ing the acquired power spectra (upon shotnoise reduction) by the theoretical Talbot transfer

function:

I(q, z)− P (q)

T (q, z)
= C(q, z)H(q). (3)

By exploiting the (possibly very) short sample-detector distances z, in the righthand side

of Eq. 3 we can approximate C(q, z) ∼ 1 due to the spatial scaling ∆r = zq/k, where ∆r is

the argument appearing in the expression of the radiation CCF. Hence the aformentioned

reduction provides a direct measurement of the spatial frequency calibration function H(q).

In these conditions, data from different sample-detector distances must superimpose to build

the single master curve H(q). If they do not, one can conclude that the radiation CCF is

affecting power spectra. This is likely the case in the horizontal direction, since the vertical

transverse coherence length of undulator radiation is (much) larger than the horizontal one.

Data shown in Fig. 3 confirm our guess. We will then associate only vertical profiles to the

calibration function H(q).
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(b) Vertical direction, zmax = 80 mm
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(c) Horizontal direction, zmax = 160 mm
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FIG. 3: Calibration functions obtained as in Eq. 3 from (a,c) horizontal and (b,d) vertical

profiles. (a,b) Only the shortest sample-detector distances 57 mm, 67 mm and 77 mm are

reported. (c,d) By including also 87 mm, 97 mm and 127 mm, horizontal profiles fail to

build a single master curve due to the limited spatial coherence, opposite to the case of

vertical profiles.
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IV. CALIBRATION ISSUES

Using the calibration function from vertical profiles as in Fig. 3(b,d) caused problems

in data reduction. First of all, compensation of the Talbot transfer function T (q, z) as in

Eq. 3 is not optimal (even at the shortest sample-detector distance z = 57 mm) due to the

presence of Talbot zeros within the probed wavevectors. Then, more significantly, reduced

data failed to build the master curve of the radiation CCF upon the spatial scaling and

they were also not properly normalized (upon calibration, data cannot exceed value 1, while

reduced curves were even higher than 2).

We then adopted the following workaround for these issues: we performed a piecewise

reduction of the Talbot transfer function by selecting only those wavevectors where T (q) is

larger than a certain threshold (hence sensibly different from zero) and we plot the results

for each sample-detector distance. We then varied the value of the threshold (given in

percentage of the maximum value of the Talbot transfer function T (q, z)) to compare the

outcomes of this procedure. Results are shown in Fig. 4 and in Fig. 5 for horizontal and

vertical profiles, respectively.
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FIG. 4: Horizontal calibration functions from a piecewise reduction of the Talbot transfer

function. Threshold values are indicated as percentage of the maximum value of T (q).
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FIG. 5: Vertical calibration functions from a piecewise reduction of the Talbot transfer

function. Threshold values are indicated as percentage of the maximum value of T (q).
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It is evident from Fig. 4 and Fig. 5 that the piecewise reduction of the Talbot transfer

function by means of threshold values is effective in avoiding division by zero. Furthermore,

increasing the threshold level compensates for the spurious contributions arising near Talbot

minima and leads to high-quality curves.

With reference to Fig. 4, it can be noticed how horizontal profiles at larger z fail to su-

perimpose. As the detection plane is moved away from the sample, they become increasingly

narrower due to the limited spatial coherence.

Vertical profiles from Fig. 5 unexpectedly exhibit two different master curves. The one

standing higher corresponds to sample-detector distances within 180 mm and 450 mm, while

the one standing lower corresponds to z ranging between 57 mm and 157 mm. This is exactly

what caused the subsequent data reduction to fail: opposite to what is usually done, in this

case we cannot use the calibration function obtained from the shortest distances to reduce

data at larger distances.

Why do data from different data sets build two different calibration curves? To answer

this question, we performed a quantitative characterization of the two calibration functions.

Restricting ourselves to q > 1 µm−1, and considering only z=57 mm, 67 mm, 77 mm, 87

mm, 97 mm for one curve (labeled as 1) and z=180 mm, 200 mm for the other one (labeled

as 2), data resemble a negative exponential of the form

H(q) ∝ exp

(

− q

qscint

)

, (4)

as shown in Fig. 6

The characteristic wavevectors qscint are different for the two data sets (0.61 µm−1 for the

first curve, 0.49 µm−1 for the second one), and they are associated to characteristic length

scales L1 = 2π/qscint,1 = 10 µm and L2 = 2π/qscint,2 = 13 µm, respectively. This obser-

vation, together with the results from Oct. 15th regarding speckle contrast vs defocusing,

points toward a reduced spatial resolution due to small changes in the position of the focal

plane with respect to the YAG front face location. Indeed, it is worth noticing that data

corresponding to larger distances were acquired before 14h25m, roughly the time when we

had a skype call to discuss about the ongoing experiments. We then agreed to move closer

to the sample (data at shorter distances were acquired after 15h18m) and this change in the

setup might have altered the focusing conditions with respect to earlier measurements.

However, thanks to the large coherence in the vertical direction, we are able to retrieve
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FIG. 6: Calibration curves for larger (open squares) and shorter (open circles) distances

and corresponding negative exponential fit according to Eq. 4 (dashed purple line and

dashed orange line, respectively). Larger distances are labeled with 1, while shorter

distances are labeled with 2. The fitted values of qscint are reported for completeness.

the correct calibration function for both data sets, and we can use one curve to process

distances shorter than 180 mm and the other one to process larger distances. In this way

normalization of power spectra and Talbot oscillations is restored, as it is shown in Fig. 7 and

Fig. 8. It proves that, as long as speckles are present, coherence information can be consis-

tently retrieved regardless of (limited) defocus aberration, provided that the corresponding

calibration function is determined. Also, by comparing data at different sample-detector

distances and by exploting the master curve criterion for H(q), we are able to retrieve the

calibration function even when we cannot move closer to the sample due to mechanical limi-

tations (for ESRF data, calibration was performed by moving a few millimeters downstream

the scattering sample). This two observations prove the robustness and self-consistency of

the technique.
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(b) z = 67 mm
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(d) z = 87 mm
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(e) z = 97 mm
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(f) z = 127 mm
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(g) z = 157 mm
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FIG. 7: Horizontal profiles of acquired power spectra (solid red line with open red circles).

We also report the results for data from a capillary filled with only water (dashed blue line

with blue square dots), as well as the spatial frequency calibration function of the YAG

screen and detection optics (dashed orange line with orange square dots).
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(b) z = 67 mm
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(l) z = 350 mm
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FIG. 8: Vertical profiles of acquired power spectra (solid red line with open red circles).

We also report the results for data from a capillary filled with only water (dashed blue line

with blue square dots), as well as the spatial frequency calibration function of the YAG

screen and detection optics (dashed orange line with orange square dots).
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V. FROM TALBOT OSCILLATIONS TO THE RADIATION CCF

After shotnoise subtraction, calibration reduction and spatial scaling, power spectra at

different sample-detector distances superimpose on a spatial master curve in the horizontal

direction. In fact, Talbot maxima lie on (and thus identify) a single curve. The spatial

master curve is not easily recognizable along the vertical direction since the envelopes of

Talbot oscillations start to be influenced by the walkoff effect related to the finite sensor

size. Results are shown in Fig. 9.
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FIG. 9: (a) Horizontal and (b) vertical profiles of acquired power spectra after shotnoise

and calibration reduction. Notice the spatial scale on the x-axis, implying that the master

curve in the horizontal direction is representative of the radiation CCF. Along the vertical

direction the spatial master curve is not as clearly visible due to the walkoff effect.

One can compensate for the walkoff effect (and in general extract the radiation CCF from

the curves C(∆r)T (∆r)) through the following steps:

• extract Talbot maxima and minima from the measured curves C(∆r)T (∆r);

• compute the radiation CCF as the average between binned maxima and minima (la-

beled as 1 in the following);

• compute the radiation CCF as by reducing binned maxima for the walkoff effect (la-

beled as 2 in the following). If no other phenomenon other than the walkoff induced
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by the finite sensor is affecting Talbot oscillations, this reduction should give the same

result as the previous point.

The results of these last steps are reported in Fig. 10 and Fig. 11, where in the latter we

also fitted data with a Gaussian function of the form

|µ(∆r)| = e−
∆r

2

σ
2 . (5)
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FIG. 10: (a) Horizontal and (b) vertical Talbot maxima and minima. Spatial master curve

of the radiation CCF can be recognized in both cases.

Fitted values for σ are

• σhor,1 = (4.7± 0.1) µm

• σhor,2 = (4.6± 0.2) µm

• σver,1 = (32.2± 2.6) µm

• σver,2 = (35.8± 4.3) µm

The transverse coherence length (as defined by Mandel) is given by σcoh = σ
√
π:

• σcoh,hor,1 = (8.3± 0.2) µm

• σcoh,hor,2 = (8.1± 0.4) µm
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FIG. 11: (a) Horizontal and (b) vertical radiation CCF, obtained as the average between

binned maxima and minima (open black triangles, labeled as 1) and as the ratio between

binned maxima and the walkoff term (open gray squares, labeled as 2). We also report a

Gaussian fit according to Eq. 5 . The fitted values of σ for both cases are indicated.

• σcoh,ver,1 = (57.1± 4.6) µm

• σcoh,ver,2 = (63.5± 7.6) µm

Assuming the VCZ theorem holds, the beam size is related to the transverse coherence

length previously defined by the following relation:

σBEAM = λz/(2
√
πσcoh), (6)

where this time z is the distance of the scattering sample from the undulator center (33 m

for our experiment):

• σBEAM,hor,1 = (112± 3) µm

• σBEAM,hor,2 = (115± 6) µm

• σBEAM,ver,1 = (16.3± 1.3) µm

• σBEAM,ver,2 = (14.7± 1.8) µm
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