# SPECKLES @ NCD

def getUndK(gap um): min valid K=0.5 a 0=-178.683137165;a 1=101031.437305031;a 2=-268554.955894147 a 3=333043.58574148;a 4=-223412.253880588;a 5=78201.083309632 a 6=-11222.656555176 r=np.roots(np.flipud([a\_0-gap\_um,a\_1,a\_2,a\_3,a\_4,a\_5,a\_6])) r=r[np.isreal(r)];r=r[r>=min valid K] return r.real[0] ALBA Energy=2.98 ALBA gamma=1+ALBA Energy\*1e3/0.511 harm=11 Gap um=6.05e3 ALBA und Period=0.0216 ALBA und numPer=92 ALBA und K=getUndK(Gap um) ALBA und B= ALBA und K/(0.934\*ALBA und Period\*1e2) ALBA und LambdaPeak nm=(1+ALBA und K\*\*2/2)/(2\*ALBA gamma\*\*2)\*ALBA und Period\*1e9 wl nm= ALBA und LambdaPeak nm/harm # on peak und radiatition





#### On-Axis Spectrum from Filament Electron Beam Total Polarization



On-Axis Spectrum from Filament Electron Beam



1e14 0.0006 8 - 7 0.0004 -- 6 0.0002 -- 5 Light distribution from 0.0000 a single particle - 4 @ (X,Xp,Y,Yp)=(0,0,0,0) - 3 -0.0002 -- 2 -0.0004 -- 1 -0.0006 --0.0006 -0.0004 -0.0002 0.0000 0.0002 0.0004 0.0006

### **Beam divergence and Slits**



Closed to 1mm x 1mm?

sigX = 130e-6 sigXp = 46e-6 sigY = 5e-6 sigYp = 4e-6

Simulated 800 particles (estimated output 1 TB)



Light distribution from a single particle @ (X,Xp,Y,Yp)=(0,0,0,0)



sigX = 130e-6 sigXp = 46e-6 sigY = 5e-6 sigYp = 4e-6



Particle at 1sigma in H divergence!

sigX = 130e-6 sigXp = 46e-6 sigY = 5e-6 sigYp = 4e-6



Particle at 1sigma in V divergence!

sigX = 130e-6 sigXp = 46e-6 sigY = 5e-6 sigYp = 4e-6

Simulated 1500 particles On the colloids plane



**Simulation** 



**Colloids** 

sensorSize=4e-3 #m MAG=23 holder\_thickness=1e-3 #m Rcoll=250e-9 #m Concentration=0.15 #W/W ro\_coll=2650 #kg/m3 ro\_water=1000 #kg/m3

Ncoll = 25e6 If we slice it longitudinally in slices Each slice: Ncoll=1e4-1e5 (in 170 um<sup>2)</sup> Filling ratio of ~2-10%



E<sub>out</sub>=k.E<sub>in</sub>e<sup>jphi</sup>

Amplitude reduction Phase delay Both dependent on n @ 20 keV

Could be estimated from the experimental ratio between water and colloids samples.

For the rest of this simulation k=0 (for simplicity) Both k=0.999 and phi=1° with 1e5 colloids were simulated and speckles were observed

### **Colloids**

#### Achievement:

Speckles observed Talbot in FFT observed S(q) quantified C(q)=1 by definition (Single particle)



### **Colloids**



Simulated T(q)\*S(q) at different distances for 20 KeV SR and 1 um colloid diameter



4 D Phase space



4 D Phase space

Color coded: SR on the colloids plane after crossing the slit



4 D Phase space

<u>Color coded:</u> SR on the detector plane only inside the FOV



### **Distance scan**



C(q) effect is more appreciable

### **Distance scan**



### **Distance scan**



### **Distance scan**



#### Decay for single particle taken as a reference



**Closing the loop** 

# $C(q) = [T(q)*S(q)*c(q)]_{BEAM} / [T(q)*S(q)]_{refParticle}$



Curves from all distances collapse!

**Closing the loop** 

# $C(q) = [T(q)*S(q)*c(q)]_{BEAM} / [T(q)*S(q)]_{refParticle}$





SR Intensity in FOV





3000

х

4000

5000 6000

0

1000

2000



















**Calibration** 

# $C(q) = [T(q)*S(q)*c(q)]_{BEAM} / [T(q)*S(q)]_{refParticle}$

Is it really 1, at which distance?



