
J. Apostolakis, A. Buckley, A. Dotti, Z. 
Marshall

G4CPT - March, 8 2010

ATLAS DETECTOR 
SIMULATION

PERFORMANCE

1



A. Dotti G4CPT

Outlook

Introduction

Tracking of particles optimization

Code optimization

Memory churn optimization

Tests done with G4 9.2.p2
2



A. Dotti G4CPT

Introduction

A mixed ATLAS / PH-SFT group has been set up with 
experts from the ATLAS sw and G4 to assess the 
performance of the ATLAS detector simulation

Mandate of the group was to produce a report indicating 
hot-spots in the simulation and possible solutions

A report has been produced: ATL-COM-SOFT-2010-008 ; 
CERN-LCGAPP-2010-01

Different areas for improvement has been identified 
classified in: review of production thresholds and code 
improvements

3



A. Dotti G4CPT

G4Step Distribution
The simulation of ttbar and MB events have been studied: typical topologies

The basic assumption is that the simulation time is proportional to the number of G4Steps 
performed

Any attempt to improve performances should concentrate on e.m. showers in EM-calos

ID

Calos
EM FCal

Had FCal

4



A. Dotti Meeting

Eta Dependence

It is recomended to review the threshold cuts for different G4Regions:
At the moment a large fraction of track is simulated in the very 
forward region (less stringent physics performances required)
This is at the moment the most promising strategy to reduce 
simulation time
potential improvement: 30%

Note: real η 
distribution for 
G4Tracks
it’s likely even more 
steep to high values

5



A. Dotti G4CPT

Other Strategis
Alternatives options to be studied with more details have 
been identified:

em option 2 (EMX phys lists) (<20% effect)
Tracking cut (0-20% effect) 
Use of different cuts for e and gammas (few % effect)
More granular G4Regions (few % effect)

Effect of a tracking cut at 44 
keV in LAr:

8% of G4Steps are below 
threshold,

these deposit 1.65% of E

6



A. Dotti G4CPT

Callgrind Studies: High Priority

The simulation program has been studied with the help of the valgrind suite

Callgrind call trees have been identified some hot-spots areas for improvement 
have been identified:

Significant time is devoted to evaluation of the magnetic field (26%).  In 
particular the time is spent in accessing the value of the field. These results 
have been obtained using the ATLAS patch number 3 that already includes 
improvements in this area (new 9.3 stepper should be tested in the future)

Significant time is spent in geometry related methods (distance to in, 
distance to out) in the EMEC wheel (15% of the CPU time in ttbar events).  
The EMEC is implemented as a single, large custom solid. Potentially 
considerable additional time is spent in energy collection methods because 
of this design.

Given the importance of the Bertini cascade for the ATLAS simulation, it is 
important to improve its code. An area of improvement to pay particular 
attention to is the use of standard library containers. The ongoing re-design 
of Bertini should bring benefits in this area.

7



A. Dotti G4CPT

Multiple Scattering (Urban Model 2) takes about 4% of the 
CPU time, a deeper analysis of the code should be foreseen 
to identify if it is possible to improve performances.
Retrieving cross-sections for the calculation of steps length 
takes about 5% of the total CPU time. This time is 
distributed equally among several models and different 
implementations
Two utility methods are called several times and are 
responsible for 2% of the CPU time: G4Track::GetVelocity 
and G4PhysicsVector::GetValue. Another 2% comes from the 
use of log and exp functions.
The, relatively rare, gamma-nuclear process takes 0.4% of 
CPU time. Possible optimization?

Callgrind Studies: Low Priority

8



A. Dotti G4CPT

Memory Churn
Previous studies carried out by ATLAS have shown that reducing the 
number of malloc (new/delete) plays an important role in sw 
performances. The ATLAS Hephaestus tool has been used to study 
this aspect:

G4TouchableHistory is responsible for 25% of the memory churn
QGSP_BERT (in particular the Bertini cascade) and its related 
methods are responsible for 40% of the memory churn
G4NavigationHistory's constructor is responsible for 25% of the 
total churn
LArG4Identifiers and related methods are responsible for 10% of 
the memory churn

atlas3 sw patch solves the first issue, this has been ported to G4 9.3
Bertini code is undergoing a re-write, it is suggested to reduce 
memory churn and re-design the use of stl containers 

9



A. Dotti G4CPT

Conclusions
The study has identified some points of improvement

ATLAS specific:

Most promising to reduce CPU time is the use of more aggressive production 
threshold and pseudo-rapidity cuts

Re-design of EMEC custom solid

LArG4Identifiers redesign to reduce memory churn

Common -B Field-:

New stepper: G4Nystron (available G4 9.3) and B-Field caching 

G4 specific:

Re-design of BERT code: reduce of memory churn

G4TouchableHistory , G4NavigationHistory re-design to reduce memory churn

UrbanModel2 is responsible of 4% of CPU

Cross sections retrieval: 5% of CPU

G4Track::GetVelocity and G4PhysicsVector::GetValue: 2% CPU

Use of exp and log: 2% CPU (part of this is also ATLAS specific)

10


