LHCb HLT performance- and regeression-tests

A hybrid deep learning approach to vertexing

Rui Fang' Henry Schreiner® Mike Sokoloff' Marian Stahl’
Constantin Weisser® Mike Williams3

" University of Cincinnati 2 Princeton University 3 Massachusetts Institute of Technology

January, 20" 2020

)|
Supported by: R.,A

Institute for Research & Innovation
in Software for High Energy Physics

@ All tracking detectors are being replaced, PID detectors upgraded; hardware triggers will be
removed and luminosity increased ~» there will be a new experiment at Point 8 after LS2!

@ Build on success of offline-quality reconstruction, alignment and calibration in Run2, LHCb
is moving to a real-time analysis approach

HLT1 on CPUs HLT1 on GPUs
@ Running a software trigger at 30 MHz with (o0 oo one) (pp collisions
limited resources poses major challenges 1o b ¢ 10 Thiwe

. . 0(250) 0(250) —
~> rethink data structure, reconstruction XB6 servers] x86 servers
and selection from the ground up; 40 Thit/s ¢ [fggg@]

(<]
©
©
—
on
o
>
O
O
T
—

1-2 Thit/s ¢

@ First part of this talk discusses a new

development process!
buffer on disk
calibration and alignment buffer on disk
. . calibration and alignment
configuration framework for the trigger,

HLT2
and the day-to-day quality assurance and (HLT2)

monitor and document every step in the o000/ a0
0(1000) x86 servers

monitoring of LHCb software 80 Grit/s ‘L 80 Ghit/s ¢

(SO j (storage

details: CHEP "19 268

@ Trigger codebase is C++, adapted to functional programming
@ Configuration written from scratch in python

@ Highlight features: implicit deduplication and dependency deduction;
algorithms globally immutable, configurability from custom python framework

@ Facilitate comprehension and debugging: tools to visualize control and data flow,
enhanced documentation and tutorials

make velo tracks().plot()

make_VPClus_location_and_of raw=<Fun pper at b1d590 for
PIT— el Makes velo clusters with VPClus
Output = /Event/DAQ/RawEvent
T Parameters: make_raw (DataHandle) - RawEventLocation for VeloClusterTrackingSIMD, defaults

to defautt_raw_even

VPClus/VPClus © tron svent
defaults-only [RarExent oo o
Returns: Adict mapping VPClus' ClusterLocation and ClusterOffsets DataHandles to
- on' and “offsets’ respectively.
PrPixelTracking/PrPixelTracking

e
2
fra)
[
—
>
on
=
c
o
(S
—
[
o))
o)
=
fra)
=
Q
=2

AlgoConfig = ForwardThenBackward 7 ClusterOffsots.
S e (] (O]
BoostPhysics = True

1= 1/

non default properties outputs inputs

@ In summer, we implemented the track reconstruction including it's documentation.
Afterwards, we moved and adapted tests to the new framework

https://indico.cern.ch/event/773049/contributions/3473309/attachments/1937519/3211534/CHEP_configuration_talk_1.pdf
https://lhcbdoc.web.cern.ch/lhcbdoc/moore/master

details: CHEP "19 493

@ The basis of LHCb's test driven development are Q(uality)M(anagment)Tests,
e.g. run PV reconstruction on reference sample and compare (efficiency) counters

@ Each (non-trivial) pull/merge request is tested against full software stack

@ Testing done on demand or in nightly slots using webhooks in GitLab

‘ Marian Stahl @msiah! -1 week ago oevoper. @ @ 2} A Ihcb-gaudi-head - build: 2508 (2020-01-20) = o
Jci-test --merge Rec!1869 oras E
@' O
Project @
Lheb Software @lhcbsoft - 1 week ago [CRON PARAM

oBase
Started reference and integration test builds. Once done, check the comparison of build and test results.

o
Onine
master vs. master+this MR+Rec!1869

A cb-mastorrof - bul: 297 2020-01-10) > A Ihch-master-r - bud: 35 2020-01-10)

Pt [

[%2]
=
S
o]
=
pras)
=
o0
o
©
o
©
(2]
his
n
(<D}
|_
=
o

omase N 0K oK oK oK

P oK oK oK oK

ons oK 209 oK 200 oK 249(4) oK 249(0)
onne oK L) oK 8 15 680 a7 83
s oK 207 oK 247 oK 247 oK 207
treom e OK 1 oK 1 oK 1 oK 1
sooke et oK i oK 1 oK 1 oK 1
s e | 0K 3. oK 3 oK 3 oK 3

@ Several flavours of nightly builds (platform, git brances, compiler, e.g. clang sanitizer etc.)

Dedicated build slots are picked up for performance- and regeression-tests

https://indico.cern.ch/event/773049/contributions/3473238/attachments/1937786/3213632/rcurrieCHEP.pdf
https://github.com/MentorEmbedded/qmtest
http://clang.llvm.org/docs/index.html

(%]
e
(%]
(5}
w
<
.9
0
(7p]
Q
—
Q
{e])]
Q
—
©
c
©
1
[}
(]
c
©
S
—
L
—
[
o

details: EP) WoC 214, 05014, EP) WoC 214, 05042

@ Scheduled tests, e.g. resource consumption or pyhsics perf., in controlled conditions

@ Important measure for the upgrade: throughputs of the whole trigger system

@ Currently testing 5 different settings for HLT1, two for HLT2 on 3 slots each night

S5 LHCb Upgrade simulation -
% Scalar event model, maximal SciFi reconstruction
= 30 Scalar event model, fast SciFi reconstruction -
4§ 39 7with tighter track tolerance criteria
T8 |Scalar event model, vectorizable SciFi reconstruction
o € 25{with entirely reworked algorithm logic
5 8 Fully SIMD-POD friendly event model, vectorizable
 § 20 {SciFi and vectorized vertex detector and PV [T e T4
g a-) reconstruction, /0 improvements
FE S
Qtas -
a9
1] 8 o =
8~ 10 .
52 P e e
o<
58°
S a
w @ 0
ot o DETNDS AISTAY SO PRI
8B & ST SEIETEAE Gl o8 S6RT
G 9. 9999 99, 99 900 00000
ey & S S NS Sy, S SRS
PO Y F T SORTER SH00T & 45568

ClusterTrackingSIMD

SciFiTrackForwarding

VeloUT

RawToHits

SciFiTrackForwardingStoreHit

FTRawBankDecoder

TrackBeamLineVertexFinderSoA

Alg

38.95 %
1113 %
10.89 %
LHCb Upgrade simulation
HLT1 Throughput Rate 40.9 MHz
200 400 500
CPU Time [s]

@ Points on time evolution plot correspond to throughput tests, each with detailed info

@ Right: summary plot of a profiling job running directly after the throughput test

https://doi.org/10.1051/epjconf/201921405014
https://doi.org/10.1051/epjconf/201921405042

(%]
-
(%]
(5}
w
<
.9
0
(7p]
Q
—
Q
{e])]
Q
—
©
c
©
1
[}
(]
c
©
S
—
L
—
[
o

[Unknown]!Total

HLT1 Flame Graph

@ Hotspot analysis with Intel® VTune™ Profiler
@ Results are vizualized in a flamegraph wcm aveue, 1), 011

A stack trace is represented as a column of boxes

Each box represents a function (a stack frame)

Width of each box shows frequency at which that function was present in the stack traces
The background color for each box is not significant

Flamegraphs are stored in interactive svg format

@ Many colleagues now use the performance- and regression-scripts
to test throughputs and do profiling offline

8 e
(11 IBPVEIOUTec 1. |
ibPrveloUT.so!LHCb::P..

https://software.intel.com/vtune
https://doi.org/10.1145/2927299.2927301

[}
o
c
©
=
(1o}
o+
=
(1]
s
Q
—
©
2
(vt
o
(9p)]

Since Nov. 19 LHCb has two on-call responsibles with different roles for upgrade software
maintainance

The maintainer (on-call for 3 months) ensures

the long term health, coherence, consistency, %

and quality of software, and supports shifters Q DEV y

The shifter (on-call for 2 weeks) ensures

quallty and tlmely merging Of merge requeStS https://about.gitlab.com/stages-devops-lifecycle/

by driving the review process

In practice this means not only code review, but includes assignining nightly slots, testing,
understanding the outcome and reporting back to the developers

Much is communication and logistics: In my 2 week shift, we reviewed 107 merge requests,
50 of which were merged. There have been several days where we were at capacity with
nightly slots and tests on demand

The feedback from the collaboration has been very positive

https://about.gitlab.com/stages-devops-lifecycle/

ACAT proceedings: arXiv:1906.08306

@ Main challenge for PV finding: number of visible PVs will increase
from ~ 1110 5.6 in upgraded LHCb
o Efficiency mainly driven by cluster search ~»> use machine learning

@ The project is standalone, and uses toy data and it's own proto-tracking.
This is the workflow in a nutshell:

Kernel generation Make predictions Interpret results
—_— — [PPRPO0 —

|

c
o
=
(S
=)
©
o
=
o+
=
S
[}
©
o
[
>
(a

Truth Trainloe

i

https://arxiv.org/abs/1906.08306

@ Reduces sparce 3D data (41M pixels) to feature-rich 1D data - kernel densities in z

@ Start from (LHCb Velo) tracks, i.e. closest to beam
(x, y,z) position, slopes (ty, t,), (covariance matrix)

@ Goal: find kernel maximum in (x, y) in each of the 4000,

Sacks GIPxyl2) tgés G(1P,|2),

where G is the product of Gaussian p.d.f.sinxandy
evaluated at the (x, y) impact parameters

to a hypothesized vertex.

@G is centered around o and has a heuristic width
estimating the IP,, uncertainties.

@ Kernel K(2) :=

c
Ke) 100 um wide z-bins. Assign it as z kernel value

)

g @ Currently, this is done by a coarse manual search . 4
S followed by a MINUIT minimization X

o .
E Ztracks g(IPX,y|Z)2

c

S

@

4

& |

e axis (along the beam)

Kernel

@ Feed kernels to a convolutional neural network, implemented in PyTorch
Further improvement possible using squared z-kernel and adding (x, y) perturbatively

@ Cost function® modified with asymmetry parameter™*, which serves as powerful control to
balance efficiency to false-positive rate

* inspired by cross entropy plus minimal offset € to y and §

#% (a-)symmetricw.rt. r = =

2] y
g Inputs 25 Channels 25 Channels 25 Channels 1 Channel Output
e 1 1 1
B 2 2 2
'U 3 > > - 3 3
o : 7
Q 25 91 5
g 26 |y f | 92 |} .
(10} -+ | Convolution - | Convolution Convolution - | Convolution -+ | Convolution | 3997
= 3998 | width: Width: Width: Width: 3998 | width: 3998
3999 25 15 15 5 3999 91 3999
4000 | Channels: Channels: Channels: Channels: 4000 | Channels: 4000
1—-+25 25 —+ 25 25 —+ 25 25—1 1—-1

y y y y y
-X T X -X T X -X T X -X T X =X I/x
Y Y v \J v

Leaky relu

Leaky relu

Leaky relu

Leaky relu

Softplus

09 i g ound 103002 of 109733 (eff 93.87%)
0.8 alse pos rate = 0.251 per event
symmetric cost function
0.7 : : ;
LR TN S SO SO SES TRt ST ound 96616 of 109733 (eff 88.05%)
g alse positive rate = 0.0485 per event
g 05 ymmetric cost function
E T
0.4 4] JOK
034 4
0.2 4 gt
R O O O SO AR O I
00 = : : : : : ; : : : : :
[} 5 10 15 20 25 30 35 40 45 50 55 60

LHCb long tracks

(2]
=
=
(2]
[}
—
-
[}
—
o
—
Q
-
o

0 5 10 15 20 25 30 35 40 45 50 55 60
LHCb long tracks

@ Proof of principle established
Improved networks show increase in efficiency and ~ factor 2 decrease of FP rate

@ Next step is benchmarking it's performance in the LHCb HLT

PVFinder is standalone, written mostly in python and has own data structure
Need C++/CUDA versions adapted to LHCb (with ability to write data for standalone PVFinder)
Kernel generation, persistency and CPU inference-engine have now been deployed in HLT1

It runs on output of a new Velo tracking algorithm farxivrer.00001

Decided for TOI'ChSCI'ipt frameworks such as Caffe2, Microsoft Cognitive Toolkit, and MXNet. ONNX is still

. . supported and actively worked in PyTorch v1.x, but it appears that TorchScript is the

as C++ inference e ngine preferred way for model exporting. See the “Further Reading” section for more
details on ONNX if you're interested.

Programming PyTorch for Deep Learning, I. Pointer, ISBN: 9781492045342

e WARNING

At the moment, the C++ API should be considered “beta” stability; we may make major breaking changes to the
backend in order to improve the API, or in service of providing the Python interface to PyTorch, which is our most
stable and best supported interface.

https://pytorch.org/cppdocs/

:
T
@
<
res)
i
—
[
8=
c
[
>
a
on
=
>
o
o
(%
o

@ We are currently collecting and evaluating results

Those from running a model trained with toy data on official LHCb MC look promising!

https://arxiv.org/abs/1912.09901
https://www.oreilly.com/library/view/programming-pytorch-for/9781492045342/
https://pytorch.org/cppdocs/

@ Update concerns width of kernel-Gaussians G. (Constant up to y? = 6, then a linear term was added)

@ We now run on ouput of production Velo tracking ~> use measured covariance matrix.
This results in a precise uncertainty estimate for the impact parameters and their
correlation - G becomes a bivariate Gaussian

@ New kernels look more pronounced in PV regions

—
5
I
—
c
(@)
=
. @ Overall kernel generation too slow
GC) = train another (C)NN that generates kernels
on
—_— o 10— — T T E
< =) F « reconble PVs oldKernels 3
[© F]
- > 3 new Kernels 1
¢ I ;
- 10°F 3
o X T E
Q E]
+— -]
rU - -
2 10°g E
) £]
o A z axis (along the beam)
l‘ . (N

100 o0 100 Kernel
Z (mm)

N~
o
=
=)
>
o
©
=
(4]
(%]
=
.9
0
=)
(@]
c
o
()

A new configuration framework for the trigger, the day-to-day quality assurance and
monitoring of LHCb software has been presented

A hybrid deep learning approach to vertexing - PVFinder - has been introduced

PVFinder is on it's way into LHCb's HLT, and can now be trained using official LHCb MC
Some final work needed to enable benchmarking the performance with standard LHCb tools
We can then apply the lessons learned in the past to tune PVFinder

Several ideas for improvement. Priorities need to be defined after benchmarking

