HL-LHC triplet errors

Hector Garcia-Morales

University of Oxford and CERN

hector.garcia.morales@cern.ch
HL-LHC IR
How do we assign errors to the inner triplet?

- 50 units \((10^{-4})\) full range of integrated gradient error
- Random error = 2 units.
- Q1, Q3: Pairing.
- Q2: Sorting and pairing.
- 1000 machines.
Error distribution
Results: $\beta^* = 40$ cm

Figure: RMS β-beating

Figure: Max. β-beating
Results: $\beta^* = 40 \text{ cm}$
Results: $\beta^* = 30 \text{ cm}$
Results: $\beta^* = 30 \text{ cm}$
Results: $\beta^* = 20 \text{ cm}$

Figure: RMS β-beating

Figure: Max. β-beating
Results: $\beta^* = 20$ cm
Results: \(\beta^* = 15 \text{ cm} \)

Figure: RMS \(\beta \)-beating

Figure: Max. \(\beta \)-beating
Results: $\beta^* = 15 \text{ cm}$
Results: successful seeds and β^*
Results: summary

Table: Summary table for different optics. Unsuccessful seeds are not taken into account

<table>
<thead>
<tr>
<th>Optics</th>
<th>Success [%]</th>
<th>Δ_β_x/β_x [%]</th>
<th>Δ_β_y/β_y [%]</th>
<th>Max. Δ_β_x/β_x [%]</th>
<th>Max. Δ_β_y/β_y [%]</th>
<th>β_x^* cm</th>
<th>β_y^* cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15cm</td>
<td>72.7</td>
<td>38</td>
<td>39</td>
<td>121</td>
<td>143</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>20cm</td>
<td>80.8</td>
<td>29</td>
<td>29</td>
<td>83</td>
<td>90</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>30cm</td>
<td>95.4</td>
<td>21</td>
<td>21</td>
<td>51</td>
<td>52</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>40cm</td>
<td>99.7</td>
<td>15</td>
<td>17</td>
<td>36</td>
<td>38</td>
<td>42</td>
<td>44</td>
</tr>
</tbody>
</table>
Conclusions

▶ Uncorrected β-beating for 15 cm is $> 100\%$.
▶ Optics commissioning should not start with $\beta^* < 30$ cm.